001010389 001__ 1010389
001010389 005__ 20240712112958.0
001010389 0247_ $$2doi$$a10.1039/D3EE02027D
001010389 0247_ $$2ISSN$$a1754-5692
001010389 0247_ $$2ISSN$$a1754-5706
001010389 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03033
001010389 0247_ $$2WOS$$aWOS:001044390000001
001010389 037__ $$aFZJ-2023-03033
001010389 082__ $$a690
001010389 1001_ $$0P:(DE-Juel1)190775$$aOsterrieder, Tobias$$b0$$eCorresponding author$$ufzj
001010389 245__ $$aAutonomous optimization of an organic solar cell in a 4-dimensional parameter space
001010389 260__ $$aCambridge$$bRSC Publ.$$c2023
001010389 3367_ $$2DRIVER$$aarticle
001010389 3367_ $$2DataCite$$aOutput Types/Journal article
001010389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706015172_11472
001010389 3367_ $$2BibTeX$$aARTICLE
001010389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010389 3367_ $$00$$2EndNote$$aJournal Article
001010389 520__ $$aOptimizing solution-processed organic solar cells is a complex and challenging task due to the vast parameter space in organic photovoltaics (OPV). Classical Edisonian or one-variable-at-a-time (OVAT) optimization approaches are laborious, time-consuming, and may not find the optimal parameter set in multidimensional design spaces. To tackle this problem, we demonstrate here for the first time artificial intelligence (AI) guided closed-loop autonomous optimization for fully functional organic solar cells. We empower our LineOne, an automated materials and device acceleration platform with a Bayesian Optimizer (BO) to enable autonomous operation for solving complex optimization problems without human interference. The system is able to fabricate and characterize complete OPV devices and navigate efficiently through the design space spanned by composition and processing parameters. In addition, a Gaussian Progress Regression (GPR) based early prediction model is employed to predict the efficiency of the cells from cheap proxy measurements, in our case, thin film absorption spectra, which are analyzed using a spectral model based on physical properties to generate microstructure features as input for the GPR. We demonstrate our generic and complete autonomous approach by optimizing composition and processing conditions of a ternary OPV system (PM6:Y12:PC70BM) in a four-dimensional parameter space. We identify the best parameter set for our system and obtain a precise objective function over the whole parameter space with a minimal number of samples. We demonstrate autonomous optimization of a complex opto-electronic device within 40 samples only, whereas an Edisonian approach would have required about 1000 samples. Even larger acceleration factors are expected for higher dimensional parameter spaces. This raises an important discussion on the necessity of autonomous platforms to accelerate Material science.
001010389 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001010389 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010389 7001_ $$0P:(DE-Juel1)194317$$aSchmitt, Frederik$$b1
001010389 7001_ $$0P:(DE-HGF)0$$aLüer, Larry$$b2$$eCorresponding author
001010389 7001_ $$0P:(DE-HGF)0$$aWagner, Jerrit$$b3
001010389 7001_ $$0P:(DE-Juel1)180635$$aHeumüller, Thomas$$b4$$ufzj
001010389 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b5$$ufzj
001010389 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b6$$eCorresponding author$$ufzj
001010389 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/D3EE02027D$$gp. 10.1039.D3EE02027D$$n9$$p3984-3993 $$tEnergy & environmental science$$v16$$x1754-5692$$y2023
001010389 8564_ $$uhttps://juser.fz-juelich.de/record/1010389/files/2305.08248.pdf$$yOpenAccess
001010389 8564_ $$uhttps://juser.fz-juelich.de/record/1010389/files/2305.08248.gif?subformat=icon$$xicon$$yOpenAccess
001010389 8564_ $$uhttps://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001010389 8564_ $$uhttps://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001010389 8564_ $$uhttps://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001010389 909CO $$ooai:juser.fz-juelich.de:1010389$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190775$$aForschungszentrum Jülich$$b0$$kFZJ
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194317$$aForschungszentrum Jülich$$b1$$kFZJ
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180635$$aForschungszentrum Jülich$$b4$$kFZJ
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b5$$kFZJ
001010389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b6$$kFZJ
001010389 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001010389 9141_ $$y2023
001010389 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001010389 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001010389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010389 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-25$$wger
001010389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2022$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001010389 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2022$$d2023-10-25
001010389 920__ $$lyes
001010389 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001010389 9801_ $$aFullTexts
001010389 980__ $$ajournal
001010389 980__ $$aVDB
001010389 980__ $$aUNRESTRICTED
001010389 980__ $$aI:(DE-Juel1)IEK-11-20140314
001010389 981__ $$aI:(DE-Juel1)IET-2-20140314