001     1010389
005     20240712112958.0
024 7 _ |a 10.1039/D3EE02027D
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03033
|2 datacite_doi
024 7 _ |a WOS:001044390000001
|2 WOS
037 _ _ |a FZJ-2023-03033
082 _ _ |a 690
100 1 _ |a Osterrieder, Tobias
|0 P:(DE-Juel1)190775
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Autonomous optimization of an organic solar cell in a 4-dimensional parameter space
260 _ _ |a Cambridge
|c 2023
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706015172_11472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimizing solution-processed organic solar cells is a complex and challenging task due to the vast parameter space in organic photovoltaics (OPV). Classical Edisonian or one-variable-at-a-time (OVAT) optimization approaches are laborious, time-consuming, and may not find the optimal parameter set in multidimensional design spaces. To tackle this problem, we demonstrate here for the first time artificial intelligence (AI) guided closed-loop autonomous optimization for fully functional organic solar cells. We empower our LineOne, an automated materials and device acceleration platform with a Bayesian Optimizer (BO) to enable autonomous operation for solving complex optimization problems without human interference. The system is able to fabricate and characterize complete OPV devices and navigate efficiently through the design space spanned by composition and processing parameters. In addition, a Gaussian Progress Regression (GPR) based early prediction model is employed to predict the efficiency of the cells from cheap proxy measurements, in our case, thin film absorption spectra, which are analyzed using a spectral model based on physical properties to generate microstructure features as input for the GPR. We demonstrate our generic and complete autonomous approach by optimizing composition and processing conditions of a ternary OPV system (PM6:Y12:PC70BM) in a four-dimensional parameter space. We identify the best parameter set for our system and obtain a precise objective function over the whole parameter space with a minimal number of samples. We demonstrate autonomous optimization of a complex opto-electronic device within 40 samples only, whereas an Edisonian approach would have required about 1000 samples. Even larger acceleration factors are expected for higher dimensional parameter spaces. This raises an important discussion on the necessity of autonomous platforms to accelerate Material science.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmitt, Frederik
|0 P:(DE-Juel1)194317
|b 1
700 1 _ |a Lüer, Larry
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Wagner, Jerrit
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heumüller, Thomas
|0 P:(DE-Juel1)180635
|b 4
|u fzj
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 5
|u fzj
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D3EE02027D
|g p. 10.1039.D3EE02027D
|0 PERI:(DE-600)2439879-2
|n 9
|p 3984-3993
|t Energy & environmental science
|v 16
|y 2023
|x 1754-5692
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1010389/files/2305.08248.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1010389/files/2305.08248.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1010389/files/2305.08248.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1010389
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ENERG ENVIRON SCI : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21