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Abstract 

Optimizing solution-processed organic solar cells is a complex and challenging task due to the 

vast parameter space in organic photovoltaics (OPV). Classical Edisonian or one-variable-at-

a-time (OVAT) optimization approaches are laborious, time-consuming, and may not find the 

optimal parameter set in multidimensional design spaces. To tackle this problem, we 

demonstrate here for the first time artificial intelligence (AI) guided closed-loop autonomous 

optimization for fully functional organic solar cells. We empower our LineOne, an automated 

materials and device acceleration platform with a Bayesian Optimizer (BO) to enable 

autonomous operation for solving complex optimization problems without human interference. 

The system is able to fabricate and characterize complete OPV devices and navigate efficiently 

through the design space spanned by composition and processing parameters. In addition, a 

Gaussian Progress Regression (GPR) based early prediction model is employed to predict the 

efficiency of the cells from cheap proxy measurements, in our case, thin film absorption 

spectra, which are analyzed using a spectral model based on physical properties to generate 

microstructure features as input for the GPR. We demonstrate our generic and complete 

autonomous approach by optimizing composition and processing conditions of a ternary OPV 

system (PM6:Y12:PC70BM) in a four-dimensional parameter space. We identify the best 

parameter set for our system and obtain a precise objective function over the whole parameter 

space with a minimal number of samples. We demonstrate autonomous optimization of a 

complex opto-electronic device within 40 samples only, whereas an Edisonian approach would 

have required about 1000 samples. Even larger acceleration factors are expected for higher 

dimensional parameter spaces. This raises an important discussion on the necessity of 

autonomous platforms to accelerate Material science. 
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Introduction 

Organic Photovoltaic (OPV) technology is highly attractive for building integrated PV [1], 

consumer ware [2], and greenhouse applications [3] due to its unique properties, including low 

weight, flexibility, and semi-transparency [4]–[7]. Additionally, OPV efficiencies have increased 

significantly over the last few years, approaching the 20 % efficiency milestone [8]. However, 

optimizing OPV devices is usually a time and workforce-intensive process due to the vast 

parameter space, including material, solution, and process parameters [9], leading to a large 

number of experiments required to find the optimal configuration. Furthermore, those 

parameters are often correlated, which makes them unfeasible for tedious and expensive trial-

and-error methods [8], [10]. Historically, it takes about 15-20 years for a new technology to be 

transferred from discovery in a lab to industrial applications [11]. 

LineOne was first built as a Device Acceleration Platform (DAP) with the intention to accelerate 

this transfer significantly by utilizing automated high-throughput experiments platforms and AI-

guided sample selection [12]. Here, for the first time, we demonstrate an autonomous 

optimization of ternary OPV devices, using a simple device structure and green solvents to 

enable the transfer to industrial pilot lines with minimal adjustments. 

High-Throughput Materials Acceleration Platforms (MAPs) manage to produce a large number 

of samples in short time frames and are already successfully deployed for biomedical research 

[13], drug discovery [14], biology [15], and organic chemistry [16]. In material science, they are 

used for growing carbon Nanotubes [12], synthesizing colloidal crystals [13], and discovering 

new materials for organic light-emitting diodes (OLEDs) [14], catalysts [15], [16], batteries [17], 

[18], and photovoltaics [19], [20]. The community has acknowledged the ability of MAPs to 

create large, reproducible data sets, thus potentially accelerating material science significantly 

for several years [11]. However, the power of MAPs remains limited if they are not connected 

to corresponding high throughput characterization and application platforms like a DAP. 

Therefore, it is necessary to fuse MAPs with DAPs into an AMADAP, combining both 

advantages in one Automated Material and Device Acceleration Platform. Combining these 

concepts requires well defined interfaces and, most importantly, autonomous operation which 

can cover material and devices optimization. In this manuscript we describe how to evolve an 

automated device processing line into an autonomous operating device optimization line.  

AMADAPs are set to generate large and unique reference data libraries. Similar to libraries 

like the Materials Genome Initiative [17], the High Throughput Experimental Database [18], 

and the Materials Experiments and Analysis Database [19], which collect and store large 

amounts of experimental and computational data to accelerate the discovery of new materials. 

For efficiently analyzing the obtained data, machine learning (ML) tools have become more 
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popular among the scientific community, powered by the increased availability of open-source 

and user-friendly toolboxes [20]–[24]. ML provides a mapping between input and target 

properties in multidimensional parameter spaces [25]. Moreover, Quantitative Structure-

Property Relationship (QSPR) models are based on the underlying physics and assist 

researchers in deepening their understanding of the investigated systems [26], [27]. In the field 

of OPV, Lee created a model based on a data set of 124 fullerene derivatives based ternary 

OSCs, which provided insights into the vital role of the Donor LUMO [28]. Wu et al. trained a 

Random Forest (RF) model on 565 donor-acceptor pairs extracted from the literature and 

determined a novel pair that achieved an impressive efficiency of 16.5 % [29], [30]. Recently 

our group successfully predicted the efficiency of PM6:Y6 OPVs using features obtained from 

absorption measurements with a Gaussian Process Regression (GPR) [31]. 

Utilizing AMADAPs together with sequential active learning algorithms creates self-driving 

labs, able to autonomously navigate and identify the optimal parameter set in multidimensional 

design spaces. Those closed-loop approaches are anticipated to increase the throughput and 

precision of experimental data generation [32] while freeing the researcher from laborious, 

repetitive tasks [33] and helping them to identify relevant parameters reliably, reducing the 

number of "unnecessary" experiments. Most commonly, a Bayesian Optimizer is incorporated 

to sample the design space efficiently and is currently the leading method for the exploration 

of low dimensional parameter spaces [34]–[39]. The algorithm chooses the following sample 

points based on an acquisition function that, by design, trades off exploration and exploitation 

of the search space. Therefore, the recorded data also includes "failed" experiments, which is 

essential for training ML models and is in contrast with the current publication bias towards 

good-performing samples [33], [40], [41]. Self-driving Labs have been successfully 

demonstrated in multiple applications, e.g., searching for improved photocatalysts for 

hydrogen production from water [42], new synthesis conditions for metallic [43], flow synthesis 

of organic compounds [44], and battery research [45], [46]. In organic photovoltaics, Bayesian 

optimization was used by our group to optimize environmental photo-stable multicomponent 

polymer composites for photovoltaic conversion [47] and by MacLeod et al. to successfully 

optimize the hole mobility of hole transfer layers [48]. However, while individual process 

conditions have been optimized, the full optimization of complete functional devices has never 

been demonstrated. 

Herein we demonstrate for the first time the autonomous optimization of an organic solar cell 

by a self-driving lab. We show that our system does identify the optimal parameter set and 

quantifies the importance of the respective parameters in one precise objective function. 

Furthermore, we couple a GPR model, predicting device efficiency at the hand of an absorption 

spectrum, to the BO [31]. Operating AMADAP in that mode allows to optimize the performance 
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of solar cells purely from absorption measurements and has the potential to reduce the 

optimization cycle from a few hours to a few minutes. We propose that integrating two AI 

approaches with fast proxy measurements is a unique strategy for further accelerating device 

optimization. 

Results and Discussion 

We conducted two independent optimization experiments to demonstrate our system, using 

the data from both experiments for the early efficiency GPR prediction. In the first experiment, 

we limited the optimization of our ternary active layer (PM6:Y12:PC70BM) to a two-

dimensional parameter space (2D), and in the second experiment, we optimized the ratios, 

concentration, and spin speed simultaneously in a four-dimensional parameter space (4D). 

The goal of both experiments was to maximize the power conversion efficiency (PCE) of the 

system. The workflow is shown in Figure 1. Orchestration of the devices and robots in LineOne 

is accomplished by an in-house developed framework [12], which can be controlled via a user-

friendly web interface. BO, GPR, LineOne, and Database communicate with each other 

through customized APIs. All data and metadata, including basic data on the raw materials, 

process conditions, environmental conditions such as atmospheric values, and of course, the 

characterization data of the measurement devices, are stored in the database together with all 

relevant and accessible metadata. This enables to start and restart the optimization procedure 

either with no pre-existing input or with any available data sets from previous campaigns as 

starting point. 
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Figure 1: Closed-Loop Optimization using UV-Vis data to predict PCE. i) The Experiment starts with creating 
an initial data set by producing and characterizing a small set of devices with different parameters obtained by LHS. 
The Data is used to train the Bayesian Optimizer (BO) and the early PCE prediction model. ii) The BO then suggests 
the parameters of a batch of new samples. iii) The solutions of the active layers are automatically mixed and 
subsequently spin-coated onto the substrates. iv) The data from UV-Vis measurements are used to predict the 
efficiency using our early prediction tool. v) The predicted efficiencies are fed to the BO, which suggests new 
samples based on all previous data. vi) Full devices are produced by evaporating HTL and electrodes on top, and 
vii) the efficiencies of the complete devices are measured. The measured efficiencies are used to retrain both 
models to increase their accuracy. 

To initialize the experiment, we created an initial data set, utilizing Latin Hypercube Sampling 

(LHS), containing 28 different samples and measuring absorption and jV-Characteristics of the 

cells. For a typical optimization procedure, we leverage the ability to produce multiple cells 

proposed by LHS in parallel with LineOne, which has the capacity to produce up to 80 

substrates with a total of 480 cells daily. Most importantly, this data set is used to train a GPR 

model to predict the efficiency of the samples using features obtained by deconvoluting the 

absorption spectra. In an earlier publication, we showed that this approach is able to predict 

efficiencies of PM6:Y6 reliably and moreover provides deep insight into the structure-property 

relationship between the morphology and electronic features [31]. Next, LineOne feeds the 

obtained data to the Bayesian optimizer to initiate the closed-loop optimization process. Using 

LHS to calculate the parameter sets for the initial samples ensures good coverage of the 

design space, decreasing the number of iterations needed for optimization. For the Bayesian 

Optimizer, we used the open-source scikit-optimize Python package, with a Matern 5/2 

Gaussian Process Kernel as the surrogate function and the "gp_hedge" acquisition function, 

which probabilistically chooses one of the three acquisition functions, lower confidence bound 

(LCB), expected improvement (EI), and probability of improvement (PI), selecting the one that 

yields the best gain in each iteration [49]. The BO proposes a batch of seven new samples in 
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each iteration, using a constant liar strategy [50], while the eighth substrate on the carrier is 

used as a reference device. The selection of the next batch is a trade-off between exploitation 

and exploration of the design space, which leads to a fast and sample-efficient optimization. 

The parameter sets of the new samples are automatically sent to LineOne to initiate the follow-

up run, which starts by mixing, spin-coating, and annealing the active layer. The absorption 

spectra of each layer are measured at six different locations of the substrate and spectrally 

modeled to extract the energetic and microstructural features that are used to predict the 

efficiency of the cells with GPR [31] pre-trained with the initial data set from the LHS run. The 

predicted values are fed back to the BO. This early prediction process reduces the time for one 

iteration from 200 to approximately 90 minutes since film processing is about three times faster 

than device processing. The major time-limiting step in the film processing is mixing the active 

layers with the ratios and concentrations suggested by the BO. Despite the much faster GPR 

loop, LineOne finalized all cells by evaporating the hole transport layer and top electrode and 

determined experimentally measured efficiencies in parallel to the GPR prediction. LineOne 

operates film processing and device processing in parallel. The BO is initially using predicted 

PCE values until experimental values are available.  

 

Figure 2: PCE of the cells during the optimization runs. Each point represents the experimentally measured 
PCE of the best cell of one sample fabricated during the optimization run for the 2D (red) and 4D (green) 
experiments. The dotted lines show the highest efficiency of all devices until the respective iteration. The initial data 
consisted of 7 (2D) and 21 (4D) samples. In each iteration, seven new Samples were fabricated. Therefore the best 
sample was found after 42 samples (5 Iterations) in the 2D optimization and 42 samples (3 Iterations) in the 4D 
optimization. 

Figure 2 shows that the best-performing cells are identified after a few iterations in both 

experiments, yielding a PCE of 14.2 % and 14.3 % for the 2D and 4D experiments, 

respectively. Note that for the initial data set from LHS, seven substrates were used for the 2D 

optimization and 21 substrates for the 4D optimization. Therefore, only 42 samples were 
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necessary to find the optimized parameter set in both experiments. To quantify the algorithm's 

performance, we run the BO 50 times on simulated functions obtained by a Gaussian process 

fit of the experimental data (Fig. S1 a). On average, it takes around four iterations to find the 

best cell in two dimensions, while it takes eight in four dimensions, corresponding to 35 and 

77 samples, respectively. In comparison, a grid search with only ten steps per parameter would 

already require 91 substrates in two and 9.100 substrates in four dimensions.  

 

Figure 3: Ratio Optimization of PM6:Y12:PC70BM. (a) The approximate objective function and (b) the uncertainty 
of the optimization run using a Gaussian Progression Regression with a 5/2 Matern Kernel. The open parameters 
rPM6 (ratio of PM6 in the total system) and rY12/(rY12+rPC70BM) (ratio of Y12 normalized to the Acceptor share) 
are shown on the x and y-axis, respectively. The color of the points shows the measured efficiencies of the samples. 
(c) 1D partial dependence plots were obtained by running the model 500 times using bootstrapping. The solid lines 
show the mean of the models, the dark blue area is the standard deviation of the different models, and the bright 
blue area is the confidence interval of one model. The best cells are produced using an equal donor-acceptor share. 
Also, the efficiency of the cells increases when lowering the PC70BM share in the samples. While the uncertainty 

of the model is low in the regions where multiple cells are fabricated, it increases in the regions with few cells. 
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Figure 4: Visualization of the influence of the experimentally controlled parameters on the efficiency 
during the ratio and process Optimization. Shown are the four open parameters rPM6 (ratio of PM6 in the total 
system), rY12/(rY12+rPC70BM) (ratio of Y12 normalized to the Acceptor share), concentration [mg/mL], and the 
spin velocity [rpm]. (a) 2D partial dependence plots showing the approximated objective function of the model. (b) 
1D partial dependence plots were obtained by running the model 500 times using bootstrapping. The solid lines 
show the mean of the models, the dark blue area is the standard deviation of the different models, and the bright 
blue area is the confidence interval of one model. The most dominant parameter is the ratio of PM6. Like in the 
2D optimization, a donor-acceptor ratio close to 1:1 and a high amount of Y12 are favorable. Increasing the 
concentration leads to slightly better cells, while the spin Velocity does not significantly impact the performance. 

Most importantly, we obtain a precise objective function (Figure 3 a), Figure 4 a)) over the 

whole design space. Visualizing the objective function helps us understand the coverage of 

the design space and the target response of our system, identifying regions of interest and 

ruling out non-performing parameter sets. Additionally, the BO returns the uncertainty of each 

point in the parameter space [35], [37], shown in Figure 2 b) and S6. Regions containing 

multiple samples show low uncertainty (around 0.5 % PCE), corresponding to the experimental 
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reproducibility on LineOne (Fig. S2). In contrast, the optimizer has a higher uncertainty in 

regions with low numbers of samples. Since we obtained the estimated target response of all 

parameter sets, we can identify the importance of each parameter, allowing us to focus on the 

dominant parameter and avoid wasting resources on those with marginal influence in 

upcoming experiments. The partial dependence plots (PDP) in Figure 2 c) and Figure 3 b) 

visualize the effect of an individual feature of interest on the target response [51]. The model 

was run 500 times using bootstrapping. Based on the small variation in the dark blue area 

representing the standard deviation of the mean prediction across all runs, we can conclude 

that the model is robust and stable. 

Additionally, the importance of each parameter in the model can be quantified by looking at 

the difference between the highest and lowest predicted efficiency values. Parameters 

significantly influencing the target response will show a large difference between these values. 

For such parameters, the PCE of the produced samples closely follows the mean prediction of 

the model. However, for less dominant parameters, the PCE values can differ significantly as 

the effects of another parameter dominate them. The dominant parameter for both experiments 

is the Donor share (rPM6). The best PCE is achieved around a Donor ratio of around 0.55 with 

efficiencies of over 14 %, while the efficiencies drastically reduce to zero for very high or very 

low Donor shares. Small PCE gains can be realized for the 4D experiment by increasing the 

concentration and tuning the spin velocity, which shows the best performance at around 2000 

rpm. 

Secondly, the share of Y12 of the total acceptor share significantly influences the cells' 

performance. Replacing PC70BM with Y12 continuously improves the performance of the 

cells. To our surprise, the BO on LineOne indicates that binary PM6:Y12 cells reach higher 

PCEs than the ternary ones. This is in contrast to reports in the literature highlighting the better 

performance of ternary OPV blends [52], [53]. However, we denote that LineOne operates 

under a constrained parameter space, which is atypical to manual optimization. Our data give 

insight that the absolute performance values of a device depend on the width of the parameter 

space allowed for optimization. On the one hand, research wants to keep the parameter space 

as small as possible to allow faster screening. On the other hand, as most parameters are not 

orthogonal to each other, a minimum dimension appears to be necessary. This underlines the 

importance of LineOne, which operates at outstanding reproducibility in well-defined 

dimensions. As an outlook to the future, we expect that systems like LineOne will be able to 

identify the most relevant and orthogonal processing parameters necessary to fully optimize 

novel material systems.  
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Figure 5: GPR PCE Prediction Performance. Investigation of the performance and number of samples necessary 
for good prediction of the PCE using the spectral features in a GPR were performed. a) The RMSE of the test and 
training set, the three-fold cross-validated R2 score (accuracy), and the respective standard deviation, depending 
on the number of samples in the training set, are shown. While the RMSE of the training set is constant over the 
whole range, the RMSE of the test set decreases, and the accuracy increases with more training data available. b) 
The predicted performance and 95 % confidence intervals are shown for the values of the features in the arithmetic 
mean (Xmean) and the parameter set with the highest predicted PCE when using 80 % of the available sample as 
training data (Xbest). 

After the measured efficiency of a new batch of cells was available, we retrained the GPR with 

the new data to improve the accuracy of our prediction model. Figure 5 a) shows the root-

mean-squared error (RMSE) of the training and test set, as well as the three-fold cross-

validated R2 score (accuracy) in dependence on the number of samples in the training set. 

The data set includes 99 different samples after we excluded bad-performing cells. Devices 

were defined as bad-performing cells if the PCE was below 1 %. The RMSE of the test set and 

the accuracy improve quite fast at the beginning and increases only slowly from approximately 

50 samples onward. At around 50 samples, we got reasonably low RMSE and satisfyingly high 

accuracy of the test set. To avoid over-fitting, we limited the boundaries of the kernel 

hyperparameter using our expert knowledge from previous simulation campaigns. Therefore, 
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the RMSE of the training set does not change significantly. To further test the prediction power 

of our model, we took the mean of the optical features (Xmean) and the parameter set with the 

best-predicted performance using 80 % of the available data as training data (Xbest) and let 

each model predict the PCE of those parameter sets (Figure 5 b)). The predicted values for 

those two parameters do not change more than 5 % after only 30 samples. 

Moreover, we are not approaching any boundaries of the data set, supporting the conclusion 

that we have identified the best parameter set in our system and do not need to increase the 

design space (see S4 and S5). While the RMSE of the test set is around 1.1 % PCE at 80 

samples, which is slightly higher than the experimental error of 0.5 % PCE on LineOne (S2), 

the confidence interval for the prediction of Xmean is less than 0.5 % PCE. With enough data 

available, the model distinguishes the experimental error from the trend. Therefore, the 

confidence interval of a prediction becomes lower than the experimental error of the system. 

Overall the spectral model predicts the efficiency of the samples precisely, even with few data 

points available. 

Overall, LineOne, combined with a BO and our early prediction GPR, is able to fully optimize 

novel material systems at an exceptionally low number of experiments and with error 

tolerances below the experimental uncertainty of LineOne. Moreover, the precisely controlled 

dimension of the parameter space opens the possibility of identifying the most decisive 

parameters controlling performance.  

Conclusion and Outlook 

In this manuscript, we demonstrated for the first time a fully autonomous optimization cycle for 

optoelectronic devices as complex as organic solar cells. Our workflow on LineOne allows us 

to quickly optimize OPV devices while creating comprehensive data sets containing 

information about the entire design space and identifying important parameters, all with 

negligible human effort. 

Understanding the influence and importance of various compositional and process parameters 

on the performance of OPV devices is crucial for the fast optimization of new materials and 

can significantly impact the rate at which the technology matures and becomes ready for 

commercialization. Understanding new materials faster and utilizing fewer quantities and 

experiments will lead to significantly better utilization of valuable resources. 

Here we report for the first time a proof-of-concept study on a self-driving lab that uses artificial 

intelligence algorithms to effectively optimize fully functional OPV devices by controlling 

composition and process parameters. Bayesian optimization makes it possible to efficiently 

find optimal performance parameters in high dimensional spaces where human intuition begins 
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to fail. Additionally, utilizing "learned" structure-property relationships allows us to perform a 

reliable GPR-based performance prediction even before a full device is finished with the top 

electrode. This makes it possible to perform rapid optimization cycles without losing any 

information by including the actual measured performance later to replace the initially predicted 

data. The absorption spectrum thus becomes an important proxy that contains the link to the 

structure-property relationship between the morphology and electronic performance 

characteristics since the underlying spectral model is based on physical properties. Unraveling 

the structure-property relationship will lead to a better understanding of the processes in the 

active layer and their influence on the device's performance.  

The obtained data is stored in accordance with the FAIR principles [54] to ensure the reusability 

of the data by other research groups. Creating, storing, and sharing data sets covering the 

whole parameter space may enable research groups to use them in their ML models, extending 

our knowledge and accelerating the material discovery process even further. By combining 

different models, we envisage workflows that will allow to operate higher-dimensional 

parameter spaces, including structural or computational information of the semiconductors, 

which has the potential to create design rules for photovoltaic semiconductors without 

expensive experiments. 

We believe that autonomous (automated and AI-guided) experimentation will significantly 

accelerate the discovery of new materials and material science in general and will play a major 

role in the future. This will shift the workflow of researchers from repetitive tasks and highly 

manual labor in the lab to designing experiments and evaluating the data.  

LineOne is not limited to OPV but can optimize any thin film system. In the future, our research 

line and framework will as well optimize other target objectives, such as the operation stability 

of devices using in-Line degradation chambers or optical transmission of the devices. At the 

same time, the modular structure of our systems allows us to extend the closed loop and 

integrate other measurements or deposition methods. 

Device Fabrication 

The Devices made in this publication were processed using the automated setups SpinBot and 

LineOne with an inverted ITO/ZnO/PM6:Y12:PC70BM/MoOx/Ag structure. Commercially 

available 25x25 mm glass substrates with patterned ITO were cleaned in an ultrasonic bath in 

DI-Water, Acetone, and IPA for 10 min each. Afterward, ZnO (N10) received from Avantama 

AG was ultrasonicated for 1 min, filtered through an 0.45 µm Polyamide (PA) filter, and 

automatically spin-coated and annealed for 30 min at 200°C using our SpinBot. Up to 96 

samples were stacked in a carrier container and brought into LineOne. PM6 was obtained by 
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Solarmer, Y12 by 1-Material, and PC70BM by Solenne BV. Stock Solutions of 20 mg/mL and 

22 mg/mL in o-Xylene were prepared and brought into LineOne. 

For the first experiment, only the composition was optimized (2 open parameters), while the 

composition, concentration, and spin velocity (4 open parameters) were optimized for the 

second one. The concentration and spin speed for the first experiment was set to 20 mg/mL 

and 1200 rpm, respectively. Table 1 shows the used parameter and parameter bounds. 

Table 1: Description of the open Parameters 

Parameter name Bounds Description 

rPM6 [0,1) PM6 (Donor) ratio in the total volume 

rY12/(rY12+rPC70BM) [0,1) Y12 ratio in the total Acceptor 

(Y12+PC70BM) share 

Conc. [mg/mL] [15,22] Concentration of the active layer solution 

Spin velocity [rpm] [800,3500] Spin velocity for the application of the AL 

 

The active layer solution was created by pipetting and mixing the stock solutions using a four-

channel pipetting robot with a modified gripper (Hamilton Starlet) and a well-plate on an 

automatic shaker. The solution was deposited on the substrate via spin coating. Afterward, all 

samples were annealed for 10 min at 120°C. The absorption spectra of the films were 

measured on six different spots using a SpectraMax M2 Platereader (Molecular devices) from 

330 to 960 nm in 10 nm steps. 10 nm MoO3 for the HTL and 100 nm silver for the top electrode 

were thermally evaporated using a shadow mask, creating six devices on each substrate with 

an active area of 0.08 cm2 each. Finally, the jV-Curves of the samples in the dark and under 

AM1.5G were measured using a SINUS-70 (Wavelabs) solar simulator. 
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A Full name of materials 

 

PM6: Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b'] dithio -

phene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-

4,8-dione)] 

Y12:  2,2'-((2Z,2'Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-

[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-

g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-

oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile 

PC70BM: [6,6]-Phenyl-C71-butyric acid methyl ester 
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B Model Evaluation Bayesian Optimizer 

 

Figure S1: Model Evaluation. (a) The Bayesian Optimizer was run 50 times on the obtained objective function 
from the two optimizations. The solid lines (blue: 2D, orange: 4D) show the mean of the 50 runs of the 
cumulatively highest normalized efficiency of all devices until the respective iteration and the interquartile range is 
the shaded area. As a baseline, the dotted lines show the mean of 50 random sampling runs. The BO takes 
around five Iterations to find the optimum. Note that we obtained by LHS sampling the initial data sets of 7 and 21 
samples for the 2D and 4D, respectively. The experimental vs. the predicted PCE of the model of the (b) 2D and 

(c) 4D optimization using a 70/30 training test split 50 times. 
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C LineOne Reproducibility of the Referenz Cells 

 

Figure S2: LineOne Reproducibility. Results of jV-measurements of the reference samples. In total 18 cells were 
fabricated with the same parameters (PM6:Y12:PC70BM (1:1.2:0.2), 20 mg/mL, 1200 rpm) during the experiments. 
Each point represents one cell (6 cells per sample). 
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D Model Performance of the GPR to predict the cell 

efficiency 

 

Figure S3: Model Performance of the PCE prediction using the UV-Vis data. The experimental vs. the predicted 
efficiency of the GPR model using a 70/30 test-train split 50 times. Each point represents one cell of the samples 

fabricated during the experiments. Cells with PCE > 1 % were excluded. 
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E Optimal spectral Features 

 

Figure S4: Predicted Optimum of each optical feature depending on the size of the training set.  
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F Distribution of the optical features in the dataset 

 

Figure S5: Distribution of the spectral data 
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G Uncertantiy of the Bayesian Optimizer in the 4D 

experiment 

 

Figure S6: Uncertainty of the Bayesian Optimizer during the 4D Experiment 

 


