001010391 001__ 1010391
001010391 005__ 20240506205523.0
001010391 0247_ $$2doi$$a10.1103/PhysRevA.106.052204
001010391 0247_ $$2ISSN$$a2469-9926
001010391 0247_ $$2ISSN$$a2469-9942
001010391 0247_ $$2ISSN$$a2469-9934
001010391 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03035
001010391 0247_ $$2WOS$$aWOS:000887241500002
001010391 037__ $$aFZJ-2023-03035
001010391 041__ $$aEnglish
001010391 082__ $$a530
001010391 1001_ $$0P:(DE-Juel1)188528$$aFerreri, Alessandro$$b0$$eCorresponding author
001010391 245__ $$aQuantum vibrational mode in a cavity confining a massless spinor field
001010391 260__ $$aWoodbury, NY$$bInst.$$c2022
001010391 3367_ $$2DRIVER$$aarticle
001010391 3367_ $$2DataCite$$aOutput Types/Journal article
001010391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714995086_17176
001010391 3367_ $$2BibTeX$$aARTICLE
001010391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010391 3367_ $$00$$2EndNote$$aJournal Article
001010391 520__ $$aWe analyze the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall. In our model, the oscillation amplitude of the harmonic oscillator is promoted to a quantum operator, providing the system with an additional quantum degree of freedom having bosonic nature. After obtaining the interaction Hamiltonian, we estimate the correction to both the ground state and its energy. We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order. Extension of our model to multiple bags is contemplated.
001010391 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001010391 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010391 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.106.052204$$gVol. 106, no. 5, p. 052204$$n5$$p052204$$tPhysical review / A$$v106$$x2469-9926$$y2022
001010391 8564_ $$uhttps://juser.fz-juelich.de/record/1010391/files/PhysRevA.106.052204.pdf$$yOpenAccess
001010391 909CO $$ooai:juser.fz-juelich.de:1010391$$popenaire$$pVDB$$popen_access$$pdnbdelivery$$pdriver
001010391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188528$$aForschungszentrum Jülich$$b0$$kFZJ
001010391 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001010391 9141_ $$y2023
001010391 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001010391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2022$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001010391 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001010391 920__ $$lyes
001010391 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001010391 980__ $$ajournal
001010391 980__ $$aVDB
001010391 980__ $$aI:(DE-Juel1)PGI-12-20200716
001010391 980__ $$aUNRESTRICTED
001010391 9801_ $$aFullTexts