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We propose a model of communication employing two harmonic oscillator detectors interacting through
a scalar field in a background Minkowski spacetime. In this way, the scalar field plays the role of a quantum
channel, namely a bosonic Gaussian channel. The classical and quantum capacities of the communication
channel are found, assuming that the detectors’ spatial dimensions are negligible compared to their
distance. In particular, we study the evolution in time of the classical capacity after the detectors-field
interaction is switched on for various detectors’ frequencies and coupling strengths with the field. As a
result, we find a finite value of these parameters optimizing the communication of classical messages.
Instead, a reliable communication of quantum messages turns out to be always inhibited.

DOI: 10.1103/PhysRevD.107.125010

I. INTRODUCTION

Quantum communication is one of the preeminent appli-
cations of quantum information theory [1–3]. Quantum
communication, in the broader sense, is concerned with
the transfer of quantum states through a quantum channel.
Such states are usually employed to encode quantum
information that must be shared between two or more users.
With the rapid development of space-based quantum tech-
nologies [4–6], which require the exchange of photons
between distant users via satellite nodes [7–12], reliable
transmission of quantum states over long distances becomes
important. Since operations in space are inherently affected
by motion [13–17] and gravity [18–21], it is of current
interest to understand how relativistic motion of physical
system or the curvature of the background spacetime affect
the transmission of quantum information.
Relativistic quantum communication channels extend

their purely quantum counterparts to regimes where rela-
tivity plays a role [22]. For example, nonstatic spacetimes
can be considered as relativistic quantum channels since
the information transmission is affected by the spacetime
evolution [23,24]. In the context of static spacetimes,
such channels can be used to study the transmission of

information between ideal pointlike two-level quantum
probes known as Unruh-DeWitt (UDW) particle detectors
that is mediated via quantized relativistic fields [25,26].
In this case, quantum fields that interact with the UDWs
propagate in flat [27–30] or curved spacetime [31,32],
and constitute the quantum channel between the two.
The formalism employed to study these systems usually
requires perturbative approaches in order to obtain explicit
solutions [22,27,28,31,32]. Nonperturbative approaches
have recently been explored with the help of gapless
detectors [33,34], and in cases where qubit detectors
interact with the field very rapidly at a single instant of
time through a deltalike coupling [29,30,35].
In the present work, we study the channel capacity of the

channel established between two particle detectors, mod-
eled as harmonic oscillators [36–39], which are coupled
via a massless scalar field in flat spacetime. The setup of
two oscillators linearly interacting with a quantum field
is formally equivalent to the quantum Brownian motion
model found in the theory of open systems [40–43]. The
time evolution of the reduced state of the oscillators admits
an exact solution for all times allowing us to study the
communication channel both for arbitrary detector-field
coupling strengths and frequencies of the detectors.
Furthermore, since harmonic oscillators are fundamentally
bosonic systems, there is an advantage compared to using
qubits in communicating a classical message since one can
arbitrarily increase the number of particles encoding the
message. Consequently, bad performance of the quantum
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channel can be compensated by increasing the number of
encoding bosons [44,45].
We quantify the reliability of the communication of

classical messages using the classical capacity of the
channel, and we find that its functional dependence on time
depends on the setup chosen for the detector systems. In the
optimal setup, where the detectors turn on sharply, the
communication between them has a long “turning on period”
after which the capacity becomes nearly constant. The
important aspect in this case is that this setup involves
finite values for the detector couplings and frequencies such
that it would be “easy” to reproduce them in a laboratory.
Moreover, we also provide a strategy to decrease the
“turning on period”, with a cost in communication reliability.
The paper is organized as follows. In Sec. II A, we

introduce our model, by giving a short description of
oscillator detectors and presenting a quantum Langevin
equation that we employ to describe theirs dynamics. In
Sec. III, we build our communication protocol. In Sec. IV,
we give a review on the classification of the quantum
channels for bosonic Gaussian systems and their capacity.
In Sec. V, we study the transmissivity, noise and capacity
of built quantum channel on a wide range of setups. Finally,
in Sec. VI, we summarize and discuss our main results.

II. QUANTUM FIELDS AND OSCILLATOR
DETECTORS

Here, we provide an introduction to the formalisms
necessary to our work.
Throughout this work, we denote spatial vectors

with boldface letters ðxÞ, while spacetime vectors are
represented by sans-serif characters ðxÞ. We use the
signature ðþ − −−Þ for the Minkowski spacetime metric.
For the Fourier transform, we employ the convention
f̃ðzÞ ¼ Rþ∞

−∞ dt eiztfðtÞ, with the inverse Fourier transform
fðtÞ ¼ ð2πÞ−1 Rþ∞

−∞ dz e−iztf̃ðzÞ, respectively. Unless oth-
erwise specified, we set ℏ ¼ c ¼ GN ¼ 1. We work in the
Heisenberg picture.

A. Harmonic oscillator detectors

We consider a massless scalar quantum field Φ̂ðxÞ
that propagates on a background (3þ 1)-dimensional
Minkowski spacetime with the metric ημν ¼ diagð1;−1;
−1;−1Þ; see [46]. The scalar field satisfies the Klein-
Gordon equation □Φ̂ðxÞ¼0, where □¼ημν∂μ∂ν¼∂

2
t −∇2

is the d’Alembert operator [46]. The standard solutions to
the Klein-Gordon equation are plane waves exp½−ikμxμ�,
where kμ ≡ ðjkj; kÞ. The field can be obtained as a linear
combination of such solutions, and it reads

Φ̂ðt;xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p ðâke−iðjkjt−ik·xÞ þ H:c:Þ; ð1Þ

where âk and â
†
k are the annihilation and creation operators

of the plane wave with momentum k. They satisfy the
canonical commutation relations ½âk; â†k0 � ¼ δ3ðk − k0Þ,
while all others vanish [46].
We next consider two static, noninteracting detectors

labeled by A and B, with unit masses mA ¼ mB ¼ 1 and
bare frequencies ωA and ωB, that are placed within one-
dimensional harmonic traps located at xA and xB, respec-
tively. Each detector is coupled to the field through the
interaction Hamiltonian,

ĤintðtÞ ¼
X

i¼fA;Bg
λiðtÞx̂iðtÞ ⊗ Φ̂fðt;xiÞ; ð2Þ

where x̂i is the displacement of each oscillator, λiðtÞ
describes how the coupling between the ith detector and
the field is switched on and off, and we have introduced the
spatial smeared field operator,

Φ̂fðt;xiÞ ¼
Z

d3xfiðx − xiÞΦ̂ðt;xÞ; ð3Þ

where fiðxÞ is the so-called smearing function, and xi is
the position of the center of mass of each detector [47].
The real-valued smearing functions fiðxÞ can be inter-
preted as the shape (thus providing the size) of each
detector [48,49]. Note that by choosing a Dirac delta
smearing fðxÞ ¼ δ3ðxÞ, the standard pointlike detector
model is recovered. We will consider a sudden switching
λiðtÞ ¼ λiθðtÞ, where θðxÞ is the Heaviside step function.
In this way, the constants λi identify the coupling strength
between the ith detector and the scalar field.

B. The quantum Langevin equation

The oscillator detector model characterized by the inter-
action Hamiltonian (2) is a special case of the Caldeira-
Leggett model of quantum Brownian motion [50,51]. In this
case, the scalar field plays the role of an environment
characterized by an Ohmic spectral density. Working in
the Heisenberg picture, the dynamics of the oscillators
can be described by the quantum Langevin equation [52],
which reads

̈x̂iðtÞ þ ω2
i x̂iðtÞ −

Z
t

0

ds χijðt − sÞx̂jðsÞ ¼ φ̂iðtÞ: ð4Þ

Here, the repeated index j is summed over j ¼ fA;Bg, the
quantity φ̂iðtÞ ≔ λiΦ̂fðt;xiÞ acts as an external force on
each oscillator, and the matrix χij ¼ χi

j defined by

χijðt − t0Þ ≔ iθðt − t0Þh½φ̂iðtÞ; φ̂jðt0Þ�i ð5Þ

is called the dissipation kernel [51], which can be identified
with the retarded propagator of the field [53].
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Introducing the following vectors and matrix notation:

x ≔
�
x̂A
x̂B

�
; W2 ≔

�
ω2
A 0

0 ω2
B

�
; φ ≔

�
φ̂A

φ̂B

�
; ð6Þ

we can recast the Langevin equation (4) in the following
compact matrix form:

ẍðtÞ þW2xðtÞ −
Z

t

0

dsχðt − sÞxðsÞ ¼ φðtÞ: ð7Þ

The solution of this equation reads

xðtÞ ¼ _GðtÞxð0Þ þ GðtÞ_xð0Þ þ
Z

t

0

dsGðt − sÞφðsÞ; ð8Þ

where GðtÞ ¼ ðGijÞi;j¼A;B is the solution of the homo-
geneous part of Eq. (7) with initial conditionsGðt ≤ 0Þ ¼ 0

(causality) and _Gð0Þ ¼ 1. It can be expressed through the
Fourier transform,

G̃ðzÞ ¼ ð−z21þW2 − χ̃ðzÞÞ−1; ð9Þ

where χ̃ðzÞ is the Fourier transformed dissipation kernel.

C. Gaussian state formalism

In this work, we focus on Gaussian states of continuous
variables systems. Gaussian states have Gaussian character-
istic functions and are completely determined by their first
and second moments [54–56]. Such states are paramount
in quantum optics [57,58], where they can be used for
quantum computing [59,60] and sensing [61].
Let us introduce the position operator x̂i¼1=

ffiffiffi
2

p ðb̂iþ b̂†i Þ
and the momentum operator p̂i ¼ 1=ð ffiffiffi

2
p

iÞðb̂i − b̂†i Þ, where
i ¼ A;B labels the detector and b̂i is the annihilation
operator of the oscillator i (not to be confused with the
annihilation operator ak of the scalar normal mode k). The
first moment is defined as the vector d ≔ ðhx̂Ai; hp̂Ai; hx̂Bi;
hp̂BiÞ, where h·i indicates the expectation value with respect
to the detectors’ state. More important to us is the covariance
matrix of seconds moments, defined by

σ ≔
�
σxx σxp

σpx σpp

�
; ð10Þ

with σαβðtÞ ≔ 1
2
hfα̂ðtÞ; β̂TðtÞÞgi − hα̂ðtÞihβ̂TðtÞi, where

α; β ∈ fx; pg. Since the relevant (i.e., entropic) quantities
we are interested in do not depend on the first moments,
from now on we focus exclusively on the covariance
matrix (10). It is worth noticing that, by exchanging the
second and third rows and columns of the covariance
matrix (10), we can rewrite it in the form,

σ ¼
�
σAA σAB

σBA σBB

�
: ð11Þ

In the latter case, the covariance matrix σAA (σBB) represents
exactly the state of the detectorA (B). The matrix σAB ¼ σTBA
instead describes the correlation between the detectors [62].

III. COMMUNICATION PROTOCOL

Our aim is to study how information encoded into states
of the detector A (held by Alice) can be faithfully trans-
mitted to the detector B (held by Bob). To this end, since
the whole system is composed by harmonic oscillators, we
consider the two detectors to be prepared initially in a
separable two-mode Gaussian state.
In the communication protocol considered here, Alice

prepares the detector A in a state that is sent to Bob through
the quantum field by means of the detector-field interaction
activated at t ¼ 0. We want to know how reliably the signal
is transmitted to Bob as a function of time t. The fact that
there is no detector-field interaction before t ¼ 0 ensures
that the detectors are completely uncorrelated at t ¼ 0,
so that σABð0Þ ¼ 0.
We also assume that the detectors and the field are

initially prepared in a separable state. The time evolution of
the expectation value of the operators x̂i¼A;B is given by
Eq. (8). Since we work in the Heisenberg picture and we
have chosen the detectors to have unit mass, the time
evolution of the momentum p̂i of the detector i reads
p̂iðtÞ ¼ _̂xiðtÞ. Finally, using Eq. (8) and its derivative, we
can compute the time evolution of the elements of the
covariance matrix (10), and we find

σxxðtÞ ¼ _GðtÞσxxð0Þ _GTðtÞ þ GðtÞσppð0ÞGTðtÞ
þ _GðtÞσxpð0ÞGTðtÞ þ GðtÞσpxð0Þ _GTðtÞ

þ
Z

t

0

ds
Z

t

0

ds0Gðt − sÞνðs; s0ÞGTðt − s0Þ; ð12Þ

σxpðtÞ ¼ _GðtÞσxxð0ÞG̈TðtÞ þ GðtÞσppð0Þ _GTðtÞ
þ _GðtÞσxpð0Þ _GTðtÞ þ GðtÞσpxð0ÞG̈TðtÞ

þ
Z

t

0

ds
Z

t

0

ds0Gðt − sÞνðs; s0Þ _GTðt − s0Þ; ð13Þ

σppðtÞ ¼ G̈ðtÞσxxð0ÞG̈TðtÞ þ _GðtÞσppð0Þ _GTðtÞ
þ G̈ðtÞσxpð0Þ _GTðtÞ þ _GðtÞσpxð0ÞG̈TðtÞ

þ
Z

t

0

ds
Z

t

0

ds0 _Gðt − sÞνðs; s0Þ _GTðt − s0Þ: ð14Þ

Here, we have introduced the quantity,

νðt; t0Þ ≔ 1

2
hfφ̂ðtÞ; φ̂Tðt0Þgi; ð15Þ
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known as the noise kernel [51], which can be identified
with the Hadamard function of the field [53].
We note that the noise kernel combined with the dis-

sipation kernel provide the Wightman two-point correlation
function of the field, namely Wðτ;τ0Þ¼ hφ̂ðτÞφ̂ðτ0Þi≡
νðτ;τ0Þþ iχðτ;τ0Þ. When the state of the field is stationary
and the detectors follow a stationary trajectory [63]—as it is
the case of static detectors in Minkowski spacetime—the
Wightman function depends only on the difference τ − τ0,
and we can write Wðτ; τ0Þ ¼ Wðτ − τ0Þ.
In our communication protocol, the input state is

characterized by the covariance matrix σin ≔ σAAð0Þ of
the detector A at t ¼ 0, while the output state by the
covariance matrix σout ≔ σBBðtÞ of the detector B at a
certain time t > 0. In order to obtain σBBðtÞ, we write the
covariance matrix (10) at the time t into the form (11).
Using the fact that σABð0Þ ¼ 0, we find that the covariance
matrix of the subsystem of the detector B at time t is
given by

σout ¼ σBBðtÞ
¼ TBBσBBð0ÞTT

BBðtÞ þ TBAðtÞσinTT
BAðtÞ

þ
Z

t

0

ds
Z

t

0

ds0ηðt − sÞνðs; s0ÞηTðt − s0Þ; ð16Þ

where the matrices Tij, with i; j ∈ fA; Bg, and η are
defined respectively as

Tij ≔

 
_Gij Gij

G̈ij
_Gij

!
; η ≔

 
GBA GBB

_GBA
_GBB

!
: ð17Þ

IV. GAUSSIAN CHANNELS AND CAPACITIES

The input-to-output transformation of Eq. (16) realizes a
one-mode Gaussian channel. For such kind of channels,
the relation between the input and the output covariance
matrices is of the form,

σout ¼ TσinTT þ N; ð18Þ

where T and N are 2×2 matrices expressing the
transmissivity and noisy properties of the channel, respec-
tively [64]. Analyzing Eq. (16), we find that

TðtÞ ¼ TBAðtÞ ¼
 

_GBAðtÞ GBAðtÞ
G̈BAðtÞ _GBAðtÞ

!
; ð19Þ

and

NðtÞ ¼ TBBðtÞσBBð0ÞTBBðtÞT

þ
Z

t

0

ds
Z

t

0

ds0ηðt − sÞνðs; s0Þηðt − s0Þ: ð20Þ

These quantities are key to our analysis below.

A. Channel classification

In general, the entropic quantities that can be computed
for a one-mode Gaussian channel are characterized by the
aforementioned 2 × 2 matrices T and N. These matrices
can be reduced to the so-called canonical form [65,66]
by applying a symplectic transformation SA on the input
covariance matrix (called preprocessing transformation)
and another symplectic transformation on the output covari-
ance matrix SB (called postprocessing transformation).1

The canonical form T c and Nc of the matrices T and N reads

T c ¼ SATSTB ¼
ffiffiffiffiffi
jτj

p
1;

Nc ¼ SBNSTB ¼
ffiffiffiffiffi
W

p
1; ð21Þ

where τ is real andW ∈ ½1=4;þ∞Þ. The preprocessing and
postprocessing matrix can be explicitly derived in terms of
the elements of the matrices T and N as

SA ¼
ffiffiffiffiffi
W4

pffiffiffiffiffiffiffiffiffiffi
N11τ

p
 N11T22−N12T12ffiffiffiffi

W
p −T12

N12T11−N11T21ffiffiffiffi
W

p T11

!
; ð22Þ

SB ¼
ffiffiffiffiffi
W4

pffiffiffiffiffiffiffiffi
N11

p
 

1 0

− N12ffiffiffiffi
W

p N11ffiffiffiffi
W

p

!
: ð23Þ

It is immediate to see that detðSBÞ ¼ 1 and detðSAÞ ¼
signðτÞ, while computing the determinant in Eq. (21),
we have τ ¼ detðTÞ and W ¼ detðNÞ. In other words, the
parameter τ can be regarded as the portion of input signal
transmitted to the output. Then, the one-mode Gaussian
channels are classified depending on their value of τ,
see [66]. We have

(i) τ > 1: An amplifier channel;
(ii) τ ¼ 1: An additive noise channel;
(iii) 0 < τ < 1: A lossy channel;
(iv) τ ¼ 0: An erasure channel;
(v) τ < 0: A conjugate channel to the amplifier one.

From the determinant of N, i.e., W, we can evaluate the
average additive classical noise n̄ produced by the channel.
In particular, for the class of additive noise channels, we have

n̄ ¼
ffiffiffiffiffi
W

p
: ð24Þ

1In some singular cases, the matrices T and N have rank 1 and
the expressions (21) are not valid. However, we shall not consider
these cases here.
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Instead, for all the other classes, we have

n̄ ¼
ffiffiffiffiffi
W

p

j1 − τj −
1

2
: ð25Þ

B. Classical capacity

An ideal one-mode Gaussian channel would be a
channel in which the output is identical to the input,
namely τ ¼ 1 and n̄ ¼ 0. Deviation from any of these
conditions gives a noisy contribution to the channel,
compromising its transmission capability. To know how
well a channel transmits information, one has to study a
quantity which takes into account both of the aforemen-
tioned contributes. Such a quantity is the capacity of the
quantum channel [67–69]. The classical capacity (quan-
tum capacity) of a quantum channel is identified as the
maximum rate of classical (quantum) information that the
channel can transmit reliably.2

The classical capacity is obtained, in general, by maxi-
mizing the Holevo information over all the possible input
states [70,71]. In the following, to avoid the regularization
problem, we restrict our input states to Gaussian states over
each channel use [72]. As a consequence, our result for the
classical capacity has to be intended as a lower bound of it.
In the considered protocol Alice, in order to encode her

classical message, starts from a state σin, and then performs
a displacement according to a Gaussian distribution
with covariance σenc. The quantum channel is then the
Gaussian map N mapping ðσin þ σencÞ ↦ σout, where σout
is the covariance matrix of the Gaussian states received
by Bob at the detector B. The Holevo information X
relative to this protocol has already been computed in the
literature [44,45], and it reads

Xðσin; σenc;N Þ ≔ SðTðσin þ σencÞTT þ NÞ
− SðTσinTT þ NÞ; ð26Þ

whereS is the Von Neumann entropy of the state represented
by the covariance matrix σ. When using covariance matrices
the Von Neumann entropy has the simple expressionSðσÞ ¼
hþðνÞ − h−ðνÞ, where ν is the symplectic eigenvalue of the
matrix σ and h� ≔ ðν� 1=2Þ logðν� 1=2Þ. When σ is a
2 × 2 matrix, its symplectic eigenvalue coincides with the
square root of its determinant. Therefore, the lower bound to
the classical capacity of the channel N is

CðN Þ ¼ max
σin;σenc

Xðσin; σenc;N Þ: ð27Þ

By writing the matrices T and N in their canonical
form (21) (and reminding that the postprocessing SB

does not change the Von Neumann entropy), the Holevo
information (26) becomes X ¼SðT cSAðσinþσencÞSTAT cþ
NcÞ−SðT cSAσinSTAT cþNcÞ. We can calculate and maxi-
mize analytically the Holevo information in this form by
applying a Bloch-Messiah decomposition to decompose the
preprocessing matrix SA [defined in Eq. (22)], see [73]. In
particular, this means that we can write SA ¼ RDR0, where
R and R0 are orthogonal matrices and D ¼ diagðr1=2; r−1=2Þ
is a squeezing matrix. It is possible to calculate r from
Eq. (22), leading to the result,

r ¼ 1

2

�
T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2 − 4

p �
; ð28Þ

where we have defined

T ≔
N22ðT2

11 þ T2
12Þ þ N11ðT2

21 þ T2
22Þffiffiffiffiffi

W
p jτj

−
2N12ðT11T21 þ T12T22Þffiffiffiffiffi

W
p jτj : ð29Þ

Then, the matrix R0 can be absorbed into the matrices σin
and σout. At this point, the Holevo information becomes

X ¼ SðjτjRDðσin þ σencÞDRT þ NcÞ
− SðjτjRDσinDRT þ NcÞ: ð30Þ

Since Nc ¼ RNcRT because Nc ∝ 1 in its canonical form,
R becomes an orthogonal transformation acting on the
argument of the entropy S. However, by its definition,
S is unaffected by orthogonal transformations. For this
reason, the matrix R can be neglected and the Holevo
information becomes (see also Ref. [44])

X ¼SðjτjDðσinþσencÞDþNcÞ−SðjτjDσinDþNcÞ: ð31Þ

For Alice, it would be optimal to encode the message
into a state with covariance matrix σenc whose symplectic
eigenvalues are as large as possible. In this way, the
classical capacity would always be infinite. To avoid this
unphysical situation, it is customary to set a bound E on
the average energy she can use (see, e.g., [74]). Explicitly,
the bound reads

1

2
TrðDðσin þ σencÞDÞ ≤

E
ωA

≡ 1

2
þ N̄; ð32Þ

where N̄ represents the average number of particles used to
encode the message.
From the input purity theorem [45], a pure input state

maximizes the Holevo information. A generic pure input
state can be written as σin ¼ 1=2 diagðj; j−1Þ, with j > 0.
For the encoding, we write σenc ¼ diagðx; yÞ with x, y > 0.

2A formal definition of reliable transmission can be found,
e.g., in [67].
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For simplicity, we define J ≔ jr, X ≔ xr and Y ≔ y=r.
Using them the Holevo information (31) becomes

XðJ; X; YÞ

¼ h

 
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτJ þ 2

ffiffiffiffiffi
W

p
þ 2τXÞ

�
τ

J
þ 2

ffiffiffiffiffi
W

p
þ 2τY

�s !

− h

 
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτJ þ 2

ffiffiffiffiffi
W

p
Þ
�
τ

J
þ 2

ffiffiffiffiffi
W

p �s !
: ð33Þ

The aim is to maximize XðJ; X; YÞ over X, Y and J that
satisfy the conditions,8>><

>>:
J
2
þ X þ 1

2J þ Y ≤ 2 E
ωA

;

X > 0;

Y > 0:

ð34Þ

The first condition in (34) comes from the condition (32).
Since we want to use as much encoding energy as possible,
we impose the equality in the first condition (34). In this
way, we can express Y in terms of X and J, and we find

Y ¼ 2
E
ωA

−
1

2J
−
J
2
þ X: ð35Þ

With this new relation we simplify Eq. (33). We then note
that, since X is present only in the first term of Eq. (33) and
hðxÞ is a monotonic function for x, we can find analytically
the optimal X for the Holevo information (33). Imposing
the second and third conditions in Eq. (34), we get3

X ¼
8<
:

0; if 2 E
ωA

< J < 2 E
ωA

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 E2

ω2
A
− 1

q
E
ωA

− J
2
; if ωA

2E < J < 2 E
ωA

:
ð36Þ

It is interesting to notice how, by fixing the encoding
energy E, the conditions (34) limit the possible values of J
between 1=ð2EÞ to 2Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 − 1

p
. In other words, by

fixing an encoding energy, the number of states that one can
create with this encoding energy is limited. As expected,
the range of possible J increases as a function of E because
we clearly have an increasing freedom of choosing different
input states. Conversely, if E ¼ ωA

2
, i.e., the minimum

possible encoding energy (vacuum energy), the only
choices for our parameters are J ¼ 1, X ¼ 0 and Y ¼ 0,
respectively.4

Inserting Eq. (36) into Eq. (33), we get an expression for
the Holevo information dependent only on J. The opti-
mization of the latter can be performed numerically, giving
the lower bound for the classical capacity.

C. Quantum capacity

We spend few words here on the quantum capacity of a
one-mode Gaussian channel. We leave the reader to the
literature for further information [66,75,76].
Again, to avoid the regularization problem [72], we

constraint our input states into states which are separable
over each channel use. Therefore the quantity of interest
becomes the single letter version Qð1Þ of the quantum
capacity. We recall that this capacity represents a lower
bound for the true quantum capacity and is obtained by
maximizing the so-called coherent information Ic defined
as the difference between the von Neumann entropy of state
resulting after the application of the channel and the von
Neumann entropy of the state resulting after the application
of the complementary channel. The maximization of this
quantity is again achieved when the encoding energy E is
infinite. However, this time, there is no need to put an
energy constraint since Qð1Þ remains finite in the limit
E → ∞. In this limit, as long as τ is positive and different
from 1, the value of the coherent information is

IcðE → ∞Þ ¼ log
τ

j1 − τj − h

� ffiffiffiffiffi
W

p

j1 − τj
�
: ð37Þ

The single letter formula for the quantum capacity is,
hence,

Qð1Þ ¼ maxð0; IcðE → ∞ÞÞ: ð38Þ

From Eqs. (37) and (38), we can notice that τ < 1=2
implies Qð1Þ ¼ 0, confirming the validity of the no-cloning
theorem [77]. Furthermore, we also note that if τ is
negative, it is possible to show thatQð1Þ is always zero [75].
Manipulating Eq. (37) and using Eq. (25), in the limit

τ → 1, the maximized coherent information converges to

IcðE → ∞Þ !τ→1
log

�
1ffiffiffiffiffi
W

p
�
: ð39Þ

V. QUANTUM CHANNEL FEATURES

We consider that both the detectors are described by the
same Gaussian spatial profile,

fiðx − xiÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−ðx−xiÞ2=σ2 ; ð40Þ

where σ determines the effective size of each detector. The
communication properties of the protocol introduced in

3To be rigorous, X ¼ 0 in Eq. (36) has to be intended as the
limit X → 0þ. Indeed, since σenc is definite positive, X ¼ 0
should not be allowed.

4To compare this result with the literature (see, e.g., Ref. [45]),
the range in which X ≠ 0 (X ¼ 0), from Eq. (36), is called third
stage (second stage).
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Sec. III will be studied for the regime σ ≪ d, i.e., when the
effective size of the detectors is negligible with respect to
their distance d. This situation is relevant, for example,
when one considers communication between satellites and
quantum probes in the outer space that are usually placed
very far from each other.5 In this case, the detectors can be
considered as pointlike objects implying that

fiðx − xiÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−ðx−xiÞ2=σ2 ∼ δ3ðx − xiÞ; ð41Þ

effectively. In this limit, the elements of the dissipation
kernel read6

χABðtÞ ¼ χBAðtÞ ¼−λAλB
4πd

θðtÞðδðtþdÞ− δðt−dÞÞ; ð42Þ

χKKðtÞ ¼ − λ2i
2π

θðtÞδ0ðtÞ: ð43Þ

A similar calculation can be performed for the noise kernel
matrix νðtÞ. The off diagonal elements read

νABðtÞ ¼ νBAðtÞ ¼ −
1

8π2d
P
�

1

t − d
−

1

tþ d

�
; ð44Þ

where P denotes the Cauchy principal value, while the
diagonal elements are

νKKðtÞ ¼ −
1

4π2
P
�
1

t2

�
: ð45Þ

We proceed by calculating the Green function solutionGðtÞ
to the homogeneous Langevin equation,

G̈ðtÞ þΩ2GðtÞ −
Z

t

0

χðt − sÞGðsÞds ¼ 1δðtÞ; ð46Þ

with initial conditions Gðt ≤ 0Þ ¼ 0 and _Gð0þÞ ¼ 1. By
inserting the dissipation kernel elements (42) and (43)
into Eq. (46), and introducing a frequency cutoff ωc by
setting δð0Þ ¼ 1ffiffiffiffi

2π
p

σ
¼ ωc, see [51], the homogeneous

Langevin equation reduces to the following system of
differential equations:

G̈AAðtÞ − Σ2
AGAAðtÞ þ 2γA _GAAðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GABðt − dÞθðt − dÞ;

G̈ABðtÞ − Σ2
AGABðtÞ þ 2γA _GABðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GBBðt − dÞθðt − dÞ;

G̈BAðtÞ − Σ2
BGBAðtÞ þ 2γB _GBAðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GAAðt − dÞθðt − dÞ;

G̈BBðtÞ − Σ2
BGBBðtÞ þ 2γB _GBBðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GBAðt − dÞθðt − dÞ; ð47Þ

where γi ≔
λ2i
8π plays the role of the field-detector coupling,

and we have defined Σ2
i ≔

ffiffi
8
π

q
γi
σ − ω2, for i ¼ A;B.

An analytical solution to the above system of differential
equations is provided in Eqs. (B2) and (B3) in Appendix B,
and it gives us the expression of the Green functions
solutions GijðtÞ for i; j ¼ A;B. These solutions have been
obtained applying either one of the following conditions:

(i) C1. jΣ2
i j ≫ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
=d with i ¼ A;B.

(ii) C2. 0 ≤ t < 2d.
Therefore, we choose to study the communication

protocol analytically at all times t only when jΣ2
i j ≫

2
ffiffiffiffiffiffiffiffi
γiγj

p =d, providing numerical results when the latter is
not satisfied.

Before continuing, it is worth stating that, by numeri-
cally computing the parameter r in Eq. (28), we find that
r ∼ 1 with an error ∼10−8 in all the cases later described. In
this way, we can consider by now r ¼ 1 where, as reported
in the literature [44], the optimization of the Holevo
information (31) occurs when X ¼ Y ¼ E=ωA and when
J ¼ 1, independently from the encoding energy E. As a
consequence, the lower bound for the classical capacity C
is given exactly by the following equation:

C ¼ h

�
τ
E
ωA

þ
ffiffiffiffiffi
W

p �
− h

�
τ

2
þ

ffiffiffiffiffi
W

p �
: ð48Þ

A. Identical detectors

We start by studying the simplified case where the two
detectors are identical; thus, γ≔ γA¼ γB and ω≔ωA¼ωB.
As a consequence, we also have Σ2 ¼ Σ2

A ¼ Σ2
B. We will

divide our analysis according to the different cases that
arise due to the condition C1.

5This scenario is also realistic in communication protocols that
take into account spacetime curvature, which usually manifests
itself on large scales and thus, becomes important when the
detectors are very distant.

6The dissipation kernel matrix χðtÞ and the noise kernel matrix
νðtÞ are analytically reported in Appendix A for Gaussian
detectors.
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1. Case I: jΣ2j ≫ 2γ=d with Σ2 < 0

Here, we provide the results when the condition jΣ2j ≫
2γ=d is satisfied. The Green function GABðtÞ is provided
in Eq. (B3), reducing to Eq. (B4) when the detectors
are identical. The transmissivity τ can be computed using
Eqs. (19) and (21), giving

τ ¼ γ2

d2
ðt − dÞ2e−2γðt−dÞ

γ2Σ

�
sinh2ðγΣðt − dÞÞ

γ2Σðt − dÞ2 − 1

�
: ð49Þ

Here, we have introduced γΣ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ Σ2

p
for simplicity of

presentation.
In Appendix C, we compute the noise for this case.

When the detectors are identical, and when the condition
jΣ2j ≫ 2γ=d holds, an analytic expression of the noise is
provided in Eq. (C4). Furthermore, once we obtain τ and
W, we can compute the lower bound of the classical
capacity with Eq. (48), imposing an encoding energy E.
In this subsection, we focus in particular on the case

Σ2 < 0 since, as we show later, the results in this case are
very different from those when Σ2 > 0. We look at the
transmissivity in Eq. (49), where τ grows very slowly once
t ≥ d. Indeed, if we Taylor expand the expression inside the
brackets in the right-hand side of Eq. (49) with respect to
small t − d, we find that the lowest order term would be
proportional to ðt − dÞ4. When this occurs, the transmis-
sivity τ reaches a peak before decaying exponentially as
e−γðt−dÞ. A plot of the transmissivity τ as function of time t
is presented in Fig. 1.
Unfortunately, it is not possible to find an exact solution

for the maximum of τ as a function of time. However, if
jΣ2j ≫ γ2 (γ2Σ is negative in this case), the first term inside
the bracket in Eq. (49) becomes negligible. In this case,
at times ðt − dÞ2 ≫ jγ2Σj, the transmissivity (49) can be
approximated as

τ ∼ −
γ2e−2γðt−dÞ

d2γ2Σ
ðt − dÞ2θðt − dÞ: ð50Þ

This equation allows us to find an approximate expression
for the maximum of τ. In particular, we find that τ reaches
its maximum at the time tmax ∼ 1=γ (which can also be seen
in Fig. 1). The maximum value reached by τ at time tmax is

τðtmaxÞ ∼
e−2

d2
�
ω2 −

ffiffi
π
8

p γ
σ − γ2

� : ð51Þ

From Eq. (51), we can see how the peak of the trans-
missivity in time τðtmaxÞ increases by increasing γ keeping
ω constant, or by decreasing ω keeping γ constant.
The behavior of the noise W as a function of time t,

quantified with the determinant of the matrix N and
explicitly reported in Eq. (C4), is shown in Fig. 2.
From it, we can see that, after a certain time,W becomes

approximately constant. By studying the long time limit
t → ∞ of Eq. (C4), an asymptotic expression can be
analytically found, and it reads

lim
t→∞

W ¼ ð4γ2 þ jΣ2j þ 2d2Σ4Þð1þ 2d2jΣ2jÞ
32 · 64πσ2d4γ2Σ8

: ð52Þ

One can easily check that the asymptotic value of the noise
decreases by increasing both γ and ω. Moreover, Fig. 2
informs us that the asymptotic value is reached at shorter
times for larger γ.
The lower bound for the classical capacity C, evaluated

through Eq. (48), is plotted in Fig. 3 with encoding
energy7 E ¼ 100.

0 2000 4000 6000 8000 10000

0.000

0.002

0.004

0.006

0.008

0.010

t

FIG. 1. Transmissivity τ as function of time t from Eq. (49)
for different values of the coupling γ, when the parameter Σ2 is
negative. In particular γ ¼ 1 × 10−3 (thick line), γ ¼ 0.75 ×
10−3 (dotted line), γ ¼ 0.5 × 10−3 (dot-dashed line), γ ¼ 0.25 ×
10−3 (dashed line). The other parameters used are σ ¼ 0.01,
ω ¼ 1, d ¼ 4.

0 2000 4000 6000 8000 10000

1 107

2 107

5 107

1 108

t

W

FIG. 2. Determinant of the matrix N, also calledW, quantifying
the noise at Bob’s detector, as function of time for different values
of γ and when the parameter Σ2 is negative. In particular
γ ¼ 1 × 10−3 (thick line), γ ¼ 0.75 × 10−3 (dotted line), γ ¼
0.5 × 10−3 (dot-dashed line), γ ¼ 0.25 × 10−3 (dashed line). The
other parameters used are σ ¼ 0.01, ω ¼ 1, d ¼ 4.

7The encoding energy E was chosen to be 1=σ to compensate
the smallness of the detectors. However, we remind the reader
that E can in principle be arbitrarily high, though finite.
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The behavior of C in time is very similar to the one of τ
shown in Fig. 1. However, the maximum of C is anticipated
with respect to the one of τ. This is because of the
increasing of the noise occurring in time (the plateau the
noise reaches comes later than the maximum of τ). This
effect is more pronounced for low values of γ. The classical
capacity C can be optimized for low values of ω. The main
reason for this is that, from the second equality of Eq. (32),
the lower the magnitude of ω, the higher the number of
particles we can use for the encoding. We have plotted C
in Fig. 4.
Summarizing, to optimize the communication capabil-

ities of this protocol in the case −Σ2 ≫ 2γ=d, increasing the
frequency of the detectors is always inconvenient. Instead,
increasing the value of the field-detector couplings γ
increases the maximum value of the capacity. However,
we cannot increase γ arbitrarily, since the condition
jΣ2j ≫ 2γ=d must remain satisfied.
It is worth noticing from Fig. 3 that for low values of γ

the capacity vanishes slower than in the case of high values

of γ. In other words, even if the peak is wider for larger
couplings γ, it is also more narrow. Therefore, in some
particular situations (e.g., if we want the communication to
last for a long time), it may be convenient to choose a lower
value of γ.
Regarding the quantum capacity, as we mentioned in

Sec. IV C, a necessary condition for it to be different than
zero is that τ > 1=2. In the case considered here, this
condition is never reached, and thus, we conclude that the
quantum capacity always vanishes.

2. Case II: jΣ2j ≫ 2γ=d with Σ2 > 0

We proceed to analyze the regime where jΣ2j ≫ 2γ=d
with Σ2 > 0. In this case, Eqs. (49) and (C4) for the
transmissivity τ and for the noise W respectively apply.
Their dependence on the parameters is very different to
the corresponding quantities for Σ2 < 0. In fact, in this
case, both τ and W exponentially increase in time. At late
times, we have

τ ∼
γ2

4d2γ4Σ
e2ðt−dÞðγΣ−γÞ; ð53Þ

while, for the noise W, we have

W ∼ γ4
�
Σ4γΣ þ 8γ4γΣ þ 12γ3Σ2 þ 8γ2Σ2γΣ þ 8γ5

þ 4γΣ4 þ 4d2Σ4γ3Σðγ þ γΣÞ2e2dðγΣ−γÞ
γ2

�
e4ðγΣ−γÞðt−dÞ

256d4Σ8γ9Σ
:

ð54Þ

Despite the exponential growth of τ andW as a function of
time, the capacity asymptotically reaches a finite value as
can be seen in Fig. 5 and Fig. 6.
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0.0005
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t

C

FIG. 3. Lower bound of the classical capacity C vs time when
the parameter Σ2 is negative. In particular γ ¼ 1 × 10−3 (thick
line), γ ¼ 0.75 × 10−3 (dotted line), γ ¼ 0.5 × 10−3 (dot-dashed
line), γ ¼ 0.25 × 10−3 (dashed line). The other parameters used
are σ ¼ 0.01, ω ¼ 1, d ¼ 4.
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FIG. 4. Lower bound of the classical capacity C vs time when
the parameter Σ2 is negative. Different values for the detectors’
frequency ω are used. In particular ω ¼ 0.75 (thick line), ω ¼ 1
(dotted line), ω ¼ 1.25 (dot-dashed line), ω ¼ 1.5 (dashed line).
The other parameters used are σ ¼ 0.01, ω ¼ 1 and d ¼ 4.
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FIG. 5. Lower bound of the classical capacity C as function of
time when the parameter Σ2, defined after Eq. (47), is positive.
For the capacity C Eq. (48) is used. Different values for the
detectors’ coupling with the field γ are used. In particular,
γ ¼ 0.01 (thick line), γ ¼ 0.011 (dotted line), γ ¼ 0.012 (dot-
dashed line), and γ ¼ 0.013 (dashed line).
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From now on, we define C∞ ≔ Cðt → ∞Þ. An approxi-
mated expression forC∞ can be found. Indeed, Eq. (48) can
be simplified using the fact that the function hðxÞ ∼ logðxÞ
when x ≫ 1. Since the noiseW is proved to be always very
high, we can exploit its asymptotic behavior. Therefore,
further algebraic manipulations of Eq. (48) give us

C ∼ log

�
1þ τffiffiffiffiffi

W
p E

ω

�
− log

�
1þ τffiffiffiffiffi

W
p

�
: ð55Þ

Since E=ω is strictly positive, the capacityC is a monotonic
function of the ratio τ=

ffiffiffiffiffi
W

p
. The latter is finite for t → ∞,

and it has the expression (D1) that we do not report here for
the sake of readability. By inserting Eq. (D1) into Eq. (55),
we get the value of the late time classical capacity C∞.
This value increases by decreasing γ and increasing ω,
optimizing the capacity. However, we cannot increase ω

or decrease γ arbitrarily since the condition Σ2 ¼
ffiffi
8
π

q
γ
σ −

ω2 ≫ 2 γ
d must remain satisfied.

Finally, we use Eq. (37) to estimate the quantum
capacity. In the case considered here, since τ increases
exponentially, the first term vanishes at late times. Since
the entropy function hð·Þ is strictly positive, Ic becomes
negative at late times which in turn implies that Qð1Þ
vanishes as well. When τ ∼ 1, the maximized coherent
information assumes the form given by Eq. (39). However,
one can easily check that

ffiffiffiffiffi
W

p
≫ 1 when τ ∼ 1, making Ic

negative and thus, again Qð1Þ ¼ 0.

3. Case III: jΣ2j ≈ 2γ=d

In this case, we assume that jΣ2j is of the order of 2γ=d.
No approximations could be performed to solve Eq. (47),
even for identical detectors. All quantities have to be
computed numerically (see Appendix B).

We ask first what happens when Σ2 ¼ 0, since both the
cases studied until now suggests that the capacity increases
the smaller jΣ2j is. The behavior of the transmissivity τ,
is depicted in Fig. 7.
We see that τ oscillates between positive and negative

values. The amplitude of these oscillations grows expo-
nentially with the time. When τ is negative, the quantum
channel behaves as the conjugate of a linear amplifier.
Nevertheless, the classical capacity is not affected by the
sign of τ when r ¼ 1. Indeed, it has been shown that, when
τ is negative, the expression (48) holds replacing τ with jτj;
see [44]. Fig. 8 shows the behavior of the classical capacity
when Σ2 ¼ 0.
As a consequence of the oscillation of τ, the capacity

has corresponding peaks with all positive values. This time,
the amplitudes of the peaks decrease exponentially with t.
Thus, for t → ∞, we have C → 0.
We proceed next to study what happens when Σ2 is

slightly negative or slightly positive. Our capacity C is now
plotted in Figs. 9 and 10, respectively, for such cases.
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0.0015
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t

C

FIG. 6. Lower bound of the classical capacity C as function of
time when the parameter Σ2, defined after Eq. (47), is positive.
For the capacity C Eq. (48) is used. Different values for the
detectors’ frequency ω are used. In particular, ω ¼ 0.75 (thick
line), ω ¼ 1 (dotted line), and ω ¼ 1.25 (dashed line).

FIG. 7. Plot of the transmissivity τ as function of time. The
parameters used are σ ¼ 0.01, ω ¼ 1, d ¼ 4, and γ ¼ π

8
σω2,

so that Σ2, defined after Eq. (47), is null.

FIG. 8. Lower bound of the classical capacity as function of
time when Σ2, defined after Eq. (47), is null. The parameters used
are σ ¼ 0.01, ω ¼ 1, d ¼ 4, and γ ¼ π

8
σω2.
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To plot the capacity we have chosen the coupling γ of
the form,

γ ¼
ffiffiffi
π

8

r
σω2 þ ϵ; ð56Þ

for convenience, where ϵ is a free parameter that we will

vary. The value of Σ2 is therefore Σ2 ¼
ffiffi
8
π

q
ϵ
σ.

Comparing the capacities in Figs. 3 and 9, we can see
how the transition between the behavior when jΣ2j ≫ γ

d and
the one when jΣ2j ∼ γ

d occurs for very small values of Σ2.
In other words, for the parameters chosen, even when
ϵ ¼ −10−3.5 (jΣ2j ∼ 32 · γ=d) the capacity qualitatively
behaves as when jΣ2j ≫ γ=d (shown in Fig. 3). When
ϵ ¼ −10−4.1 (jΣ2j ∼ 8), a small oscillatory behavior appears
in the capacity as shown in Fig. 9. For ϵ ¼ −10−4.7, the
oscillating behavior is fully present. It is worth specifying
that, even in this case, the capacity decreases to zero with
increasing time. We conclude that this is a general property
valid for Σ2 ≤ 0.
For Σ2 ∼ 2γ=d and positive, we have the capacities in

Fig. 10. Again, the capacity qualitatively behaves as the
case Σ2 ≫ 2γ=d even when ϵ ¼ 10−4.5 (Σ2 ∼ 3γ=d). Then
the capacity starts to decrease after the peak, until it reaches
a negative value and starts to oscillate. In this case, for
t → ∞ a finite value of the capacity is expected. However, a
numerical study of this value is inhibited by the enormous
chattering occurring at late times.
The ideal situation is the one in which the classical

capacity remains constant after reaching its maximum,
becoming C∞. Therefore, the best situation shown in
Fig. 10 is the capacity behavior of the dotted line,
corresponding to Σ2 ∼ 3γ=d. By testing different values
of Σ2 even for different setups (different σ or d), the best
value of C∞ occurs always when Σ2 is very close to 4γ=d.

In particular, testing the values for d and σ used in Fig. 12,
the standard deviation of dΣ2

γ from the value 4 is of

order 10−4, which can be considered a negligible numerical
error. We can therefore conclude that, in order to reach the
asymptotic constant value C∞, we must require Σ2 ¼ 4γ=d.
In term of the parameters of the problem this condition reads

γ ¼ γmaxðωÞ ≔
d
4

ω2� ffiffi
8
π

q
d
4σ − 1

� : ð57Þ

Summarizing, once we fix ω, d and σ, if we choose
γ ¼ γmaxðωÞ, then the classical capacity C increases in time
reaching an asymptotic value C∞. If γ < γmax, the capacity
C starts to decrease after reaching its maximum value ∼C∞,
as shown in Fig. 10, therefore having an asymptotic value
lower than C∞. If γ > γmax, the growth of C stops earlier
with respect to the case γ ¼ γmax reaching, again, an
asymptotic value lower than C∞.
Wenowaskwhat frequencyω shouldwe choose in order to

have the asymptotic value C∞ as large as possible. One can
numerically see that the ratio between τ and

ffiffiffiffiffi
W

p
increases

with growing the detectors’ frequency ω. However, if we fix
the encoding energy E, the larger the frequency ωA ¼ ω of
Alice’s detector, the more encoding energy would be spent to
prepare Alice’s initial state [this can be explicitly seen in
Eq. (48)]. As a consequence, it is shown in Fig. 11 that it is
convenient to increase the detectors’ frequency ω, as well as
the coupling γ ¼ γmaxðωÞ, only until a certain value, which
we call ωmax. After this value, increasing the detectors’
frequency becomes inconvenient, because the loss we
would have decreasing the number of encoding particles
N ¼ E=ωA − 1=2 overcomes than the gain obtained
increasing τ=

ffiffiffiffiffi
W

p
.

With the parameters σ and d chosen in Fig. 11, the
detector frequency maximizing C∞ (which we call ωmax

FIG. 9. Lower bound of the classical capacity as function of
time for small negative values of ϵ, defined in Eq. (56) and
encoding energy 100. In particular ϵ ¼ −10−3.5 (dotted line),
ϵ¼−10−4.1 (dashed line), and ϵ¼−10−4.7 (solid line). The
parameters used are σ ¼ 0.01, ω ¼ 1, d ¼ 4, and γ ¼ π

8
σω2.

FIG. 10. Lower bound of the classical capacity as function of
time for small positive values of ϵ, defined in Eq. (56) and
encoding energy 100. In particular ϵ ¼ 10−4.5 (dotted line),
ϵ ¼ 10−4.7 (dashed line), and ϵ ¼ 10−4.8 (solid line). The param-
eters used are σ ¼ 0.01, ω ¼ 1, d ¼ 4, and γ ¼ π

8
σω2.
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from now on) is ωmax ≃ 3.4. The value ωmax is numerically
found also for other configurations of σ and d. The result
for ωmax is shown in Fig. 12. Hence, for the given values of
σ and d in Fig. 12, we found the values of the detector
frequency and coupling necessary to have the best classical
capacity. It is possible to repeat the numerical procedure
with every protocol setup (i.e., for every value of σ and d).
In this way, we always know how to tune the detectors’
frequency and the coupling in order to maximize the
communication of classical messages.
Finally, we numerically computed the maximized coher-

ent information Ic from Eq. (37). Even in the best classical
capacity scenario, it results always negative. We think that
this occurs because, in all the contexts considered, we
obtained

ffiffiffiffiffi
W

p
≫ τ thus, making the second term of Ic in

Eq. (37) much larger than the first. As a consequence, the
quantum capacity turns out to be always zero for identical
detectors. We leave it to the future to investigate the
possibility of a reliable communication of quantum mes-
sages by dropping the approximation σ ≪ d.

B. Different detectors

We now proceed with the study of detectors that have
different frequencies and/or couplings with the field,
namely ωA ≠ ωB and γA ≠ γB. In Sec. VA 3, we have
seen that the capacity for identical detectors is optimized
when jΣ2j is comparable to 2γ=d; therefore, we make an
educated guess and here limit ourselves to setups, where
jΣ2

Aj ∼ 2γA=d and jΣ2
Bj ∼ 2γB=d, leaving the result for τ

for other setups in Appendix D. The main motivation is
that our goal is to find a setup maximizing the classical
capacity. Henceforth, we want to see how the best
classical capacity obtained in the identical detector case
changes by making the detectors with different param-
eters ωi and γi.

1. Case I: γA ≠ γB with ωA =ωB

We first consider the case with different detector-field
couplings γA≠ γB, but with equal frequencies ω¼ωA¼
ωB. In Fig. 13, we present the lower bound to the classical
capacity C, using γA ¼ γmaxðωAÞ and different values of γB
in the neighborhood of γmaxðωBÞ. When γB > γA, we can
observe that the late time capacity C∞ is lower than the
case γA ¼ γB.
Instead, when γB < γA, the capacity presents an oscil-

lating behavior, which means that it cannot always be
nonzero at late times. The frequency of the capacity
oscillations is proportional to γA − γB. Furthermore, com-
paring the dashed and the solid lines, we observe that, when
γB is slightly smaller than γA, there is a period of time in
which the capacity is higher with respect to the identical
detectors case. Nevertheless, the capacity drops to zero at
late times and, for this reason, the setup γA ¼ γB may be the
preferable one for communication.

FIG. 11. Asymptotic value of the capacity C (also called C∞) as
a function of ω, when γ ¼ γmaxðωÞ. The other parameters chosen
are d ¼ 4 and σ ¼ 0.01.

FIG. 12. Plot of the frequency ωmax needed to optimize the late
time classical capacity C∞, following the criterion explained
under Eq. (57), for different values of σ and d. The coupling is
γ ¼ γmaxðωmaxÞ, following Eq. (57).

FIG. 13. Lower bound of the classical capacity with encoding
energy E ¼ 100, as function of time t, for values γB different
than γA. In particular, γB ¼ 1.01 · γA (dot-dashed line), γB ¼ γA
(solid line), γB ¼ 0.99 · γA (dashed line), and γB ¼ 0.98 · γA
(dotted line). The other parameters chosen are d¼4, σ ¼ 0.01,
ωA ¼ ωB ¼ 1, and γA ¼ γmaxðωAÞ, where γmax is defined
in Eq. (57).
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2. Case II: γA ≠ γB and ωA ≠ ωB

We now consider the case of different detector frequen-
cies and define ωA ≔ ω̄=α and ωB ≔ αω̄ for convenience.
Moreover, we assume that the couplings are the optimal
ones, i.e., γA ¼ γmaxðωAÞ and γB ¼ γmaxðωBÞ.
In this case, numerical results for the capacity are shown

in Fig. 14.
We can see that the capacity increases when ωB > ωA. In

fact, by decreasing Alice’s detector frequency ωA, a greater
number of encoding particles N ¼ E=ωA − 1=2 can be
used for the communication protocol. In other words, more
encoding energy is saved for this purpose. We now ask if
the capacity increases for ωB > ωA even if we keep the
number of encoding particles N fixed. Removing the
explicit dependence of ωA on the capacity, we have

C ¼ h

�
τ

2
þ

ffiffiffiffiffi
W

p
þ τN

�
− h

�
τ

2
þ

ffiffiffiffiffi
W

p �
: ð58Þ

The result is shown in Fig. 15.
This confirms that, by fixing the number of encoding

particles, the identical detector setup remains the best for
the communication protocol. It is worth noticing that, when
ωA > ωB, the increase of the capacity is anticipated with
respect to the case ωA ¼ ωB. As a consequence, despite the
asymptotic value of the capacity C∞ is lower compared to
the one in the case of the identical detectors, the early time
capacity is higher when ωA > ωB. Therefore, if we have
constrained to N the number of particles used, but we do
not have a limit for the encoding energy E, it is convenient
to set ωA > ωB in situations in which one requires a good
communication at early times.
Finally, as the case in Sec. VA 3, we never find a

situation in which the maximized coherent information Ic,

given by Eq. (37), is positive. This means that the quantum
capacity Qð1Þ results zero also in this case.

VI. CONCLUSIONS

In this work, we studied the communication of classical
and quantummessages between two field detectors, modeled
as quantum oscillators, that are separated by a distance d,
have characteristic sizes σ, and have frequencies ωA (sender)
and ωB (receiver). The communication channel is mediated
by a scalar field that is coupled with both detectors via a
monopole interaction, governed by the coupling constants
γA and γB, respectively. We focused on the communication
of classical messages, quantified by the classical capacity
of the communication channel, since we have shown that
reliable communication of quantum messages is shown to be
impossible for pointlike detectors (i.e., when σ ≪ d).
In principle, one may expect that the communication

improves with increasing coupling between the detector
and the field. In fact, we can say that a stronger coupling
of the detectors with the field means the message to be
communicated “is better coupled” with Alice and Bob’s
detector. However, the stronger Bob’s coupling γB, the
more Bob’s detector witnesses noisy particles as well.
To solve this problem, a strategy would be to decrease
Bob’s coupling γB, leaving a high coupling γA in the case of
Alice’s detector. If the scalar field is coupled to a two-level
Unruh-DeWitt detector, this strategy can be shown to
work [34,35]. However, we have shown that, for harmonic
oscillator detectors, the communication properties are
compromised even if we slightly deviate from the equal
coupling case γB ¼ γA. As a consequence, the best setup in
terms of magnitude of the capacity occurs when the
detectors are identical and when their coupling γ is equal
to a finite value related to the other parameters σ, d, and ω
through Eq. (57).

FIG. 14. Lower bound of the classical capacity with fixed
encoding energy E ¼ 100, as function of the time t, for different
values of the parameter α, changing the frequencies and the
couplings of the detectors. In particular, α ¼ 1.5 (dashed line),
α ¼ 1 (solid line), α ¼ 0.5 (dot-dashed line). The other param-
eters are ω̄ ¼ 1, σ ¼ 0.01, d ¼ 4.

FIG. 15. Lower bound of the classical capacity with fixed
encoding number of particles N ¼ 100, as function of the time t,
for different values of the parameter α, changing the frequencies
and the couplings of the detectors. In particular, α ¼ 1.5 (dashed
line), α ¼ 1 (solid line), α ¼ 0.5 (dot-dashed line). The other
parameters are ω̄ ¼ 1, σ ¼ 0.01, d ¼ 4.
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We have shown that the symmetric setup is the best in
terms of maximizing the channel capacity. Nevertheless, it
is worth mentioning another setup that makes the commu-
nication of a classical message faster at the expense of
reliability. As shown in Fig. 15, if we consider different
detectors by changing both the frequencies and the field
couplings, each one satisfying the constraint Eq. (57), the
capacity exceeds that of the previous scenario at early times
when γB < γA. This is valid exclusively if Alice has a
limited amount of encoding particles but an unlimited
amount of encoding energy.
The advantage of using oscillatorlike detectors over

qubit UDW detectors to communicate classical messages
relies on the arbitrary (though finite) energy that can be
used in the encoding process. In other words, if we have
enough energy it is always possible to have a reliable
communication of classical signals. For this reason it
would be interesting to explore the advantage that
oscillator-like detectors offer in the context of curved
spacetime backgrounds or when they follow noninertial
trajectories [63].
It may be worthwhile to investigate the feasibility of

incorporating smooth time-dependent switching functions
λðtÞ (see, e.g., [78,79]), which smoothly turn on and off the
interaction between the detectors and the field, as a means
to reduce the acquired noise. However, in this case, the
coefficients γi and Σ2

i become time dependent and non-
linear. Hence, the solution of the Langevin equation (47)
becomes challenging, even numerically. For this reason,
we defer discussion of the potential to increase channel
capacity through the use of smooth switching functions to
future work.
The reliable communication of a quantum signal seems

to be impossible for the protocol studied. In future work, we
aim to devise setups that maximize the coherent informa-
tion and allow the possibility of a reliable communication
of quantum messages.
To conclude, we have quantified the classical channel

capacity for communication protocols where a signal is
communicated between two oscillatorlike detectors by
means of a scalar field. We believe that this is the first
step in the direction of understanding (quantum) commu-
nication processes in relativistic contexts.
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APPENDIX A: DISSIPATION AND NOISE
KERNELS FOR GAUSSIAN SMEARING

In this appendix, we report the expressions for Gaussian
detectors without performing the point-like limit approxi-
mation (41). The Gaussian spatial profile is

fiðx − xiÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−ðx−xiÞ2=σ2 : ðA1Þ

We note that Gaussian functions do not have compact
support, and therefore, the two detectors may directly
interact with each other through the tails of the Gaussian.
However, by placing the detectors far enough each other,
this direct crosstalk is suppressed exponentially thus
assuring that at t ¼ 0, their quantum state can be taken
to be uncorrelated; i.e., σABð0Þ ¼ 0.
We calculate the elements of the dissipation kernel (5)

to obtain

χABðtÞ ¼ χBAðtÞ ¼
λAλB
4π2σd

θðtÞ
ffiffiffi
π

2

r �
e−

ðt−dÞ2
2σ2 − e−

ðtþdÞ2
2σ2

�
;

ðA2Þ
and the diagonal expression,

χKKðtÞ ¼
λ2Kt

2π2σ3

ffiffiffi
π

2

r
e−

t2

2σ2 ; ðA3Þ

where d ¼ jxA − xBj is the spatial distance between the two
detectors, we have made the change of variable t → t − t0,
and K ¼ A;B.
The Fourier transform of the dissipation kernel elements

are then given respectively by

χ̃ABðzÞ ¼ χ̃BAðzÞ

¼
ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

e−
−z2σ2

2

�
eizd
�
1þ erf

�
1þ izσffiffiffi

2
p

�	

− e−izd
�
1 − erf

�
1 − izσffiffiffi

2
p

��

; ðA4Þ

and the diagonal term,

χ̃KKðzÞ ¼
γi
σ

ffiffiffi
2

π

r �
2þ i

ffiffiffiffiffiffi
2π

p
zσe−

−z2σ2
2 − 2

ffiffiffi
2

p
zσD

�
zσffiffiffi
2

p
��

;

ðA5Þ

where γK ≔ λ2i =8π, erfðzÞ is the error function, andDðzÞ ≔
e−z

2 R z
0 et

2

dt is the Dawson’s integral [80]. On the other
hand, the elements of the noise kernel (15) are

νABðtÞ ¼ νBAðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2γAγB

p
πσd

�
D

�
tþ dffiffiffi
2

p
σ

�
−D

�
t − dffiffiffi
2

p
σ

��
;

ðA6Þ
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and

νKKðtÞ ¼
γK
πσ2

�
1 −

ffiffiffi
2

p
t

σ
D

�
tffiffiffi
2

p
σ

��
ðA7Þ

in the case of the diagonal term.

APPENDIX B: GREEN FUNCTION
CALCULATION

In this appendix, we clarify how to obtain the Green
functions GKKðtÞ, with K ¼ A;B. The set of equations to
be solved is

G̈AAðtÞ − Σ2
AGAAðtÞ þ 2γA _GAAðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GABðt − dÞθðt − dÞ;

G̈ABðtÞ − Σ2
AGABðtÞ þ 2γA _GABðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GBBðt − dÞθðt − dÞ;

G̈BAðtÞ − Σ2
BGBAðtÞ þ 2γB _GBAðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GAAðt − dÞθðt − dÞ;

G̈BBðtÞ − Σ2
BGBBðtÞ þ 2γB _GBBðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
d

GBAðt − dÞθðt − dÞ; ðB1Þ

from which it can be seen that GABðtÞ ¼ GBAðtÞ. The latter
can be solved by taking step by step the range of times
0 < t < d, d < t < 2d, 2d < t < 3d etc. In the range of
times 0 < t < d, the external forces are zero by the presence
of the Heaviside theta in the right-hand sides of Eq. (B1).
Therefore, all the elements of the Green function matrix
behave as a free damped harmonic oscillator.
For the diagonal elements GKK , using the boundary

conditions _GKKð0Þ ¼ 1 and GKKð0Þ ¼ 0, we obtain

GKKðtÞ ¼ θðtÞ
e−γKt sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2K þ Σ2

K

p �
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2K þ Σ2
K

p : ðB2Þ

At this point, we can calculate the Green function matrix
elementsGAB andGBA, taking the second and third equations
of the system (B1). In the range 0 ≤ t < d, the differential
equations for GABðtÞ and GBA become homogeneous.

The only solution for them satisfying the boundary conditions
GABðt ¼ 0Þ ¼ 0 and _GABðt ¼ 0Þ ¼ 0 is GBA ¼ GAB ¼ 0,
which confirms that information cannot travel faster than light
(recall that c ¼ 1 here). As a consequence, from the first and
fourthofEq. (B1),we can immediately see that the differential
equations for the Green functions GKKðd ≤ t < 2dÞ remain
homogeneous also in the range d ≤ t < 2d. Imposing the
continuity of GKK and _GKK at t ¼ d, we conclude that
the solution for GKK, given by Eq. (B2), is valid also in the
range d ≤ t < 2d.
The second and third differential equation of the

system (B1), for GAB and GBA become nonhomogeneous
at t > d. From the time d to 3d, the nonhomogeneous
term is proportional to GBBðt − dÞ or GAAðt − dÞ given by
Eq. (B2). By imposing the continuity of GAB and _GAB, or
GBA and _GBA, at t ¼ d, we have that, in the range d <
t < 3d, the off diagonal Green’s functionGAB ¼ GBA reads

GABðtÞ ¼
2

d

ffiffiffiffiffiffiffiffiffiffi
γAγB

p
θðt − dÞ

ð4γAγBðΣ2
A þ Σ2

BÞ − 4Σ2
BγA − 4Σ2

Aγ
2
B þ ðΣ2

A − Σ2
BÞ2Þ

×
�ð2γ2A þ ðΣ2

A − Σ2
BÞ − 2γAγBÞ sinh ððt − dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A þ Σ2

A

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2A þ Σ2
A

p e−γAðt−dÞ þ A ↔ B

þ 2ðγA − γBÞ
�
cosh

�
ðt − dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2A þ Σ2

A

q �
e−γAðt−dÞ − cosh

�
ðt − dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2B þ Σ2

B

q �
e−γBðt−dÞ

��
: ðB3Þ

When the detectors are identical, i.e., γA ¼ γB and ωA ¼ ωB, Eq. (B3) reduces to

GABðtÞ ¼ γ
ðt − dÞθðt − dÞe−γðt−dÞ

dγ2Σ
coshðγΣðt − dÞÞ

�
1 −

tanhðγΣðt − dÞÞ
γΣðt − dÞ

�
; ðB4Þ

where we have introduced γΣ∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ Σ2

p
for convenience of presentation.
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To this point, we have solved the differential
equations (B1) in the range of times 0 ≤ t < 2d. The
Green function solutions give the transmissivity and the
noise in the same range of times. In principle, one can
put the Green function (B3) into the first and fourth line of
the system (B1) to calculate the Green functions GKKðtÞ
at times 3d < t < 5d. Then, one can use the solutions
obtained this way and insert them into the second and
third of Eq. (47) computing GABðtÞ ¼ GBAðtÞ at times
2d < t < 4d. One can continue with this procedure indefi-
nitely, obtaining solutions for all the times. Analytical
solutions are always expected for each range of times since
the inhomogeneous terms appearing in the differential
Eq. (B1) are always sums of exponentials. However, with
increasing time t, these solutions become increasingly
complicated. For all purposes, if we want to know the
behavior of the Green functions in an arbitrary range of
time, numerical calculations are necessary, and solving the
system (B1) step by step is required.
We now show that, considering a particular range for the

parameters ωK, γK , d, and σ, the equations for the Green
functions (B2) and (B3) that are valid at 0 ≤ t < 2d can be
considered valid also at t ≥ 2d. We do this by analyzing
the equations in the system (B1): if the right-hand side of
those equations is negligible, then the Green functions are
approximately the solutions (B2) and (B3) even for t ≥ 2d.
This argument can be verified through the homogeneous
Eq. (46) as follows. We can apply the Fourier transform on
both sides and easily obtain

G̃KKðzÞ ¼
−Σ2

K − z2 − 2izγK
det G̃ðzÞ−1 ; ðB5Þ

and

G̃ijðzÞ ¼
2
ffiffiffiffiffiffiffi
γKγj

p
d eizd

det G̃ðzÞ−1 ; ðB6Þ

where we have defined det G̃ðzÞ−1 ¼ ðΣ2
A þ z2 þ 2izγAÞ×

ðΣ2
B þ z2 þ 2izγBÞ − 4γAγB

d2 e2idz. If the condition 4γAγB ≪
d2jΣ2

AΣ2
Bj holds, then the last term in the denominator can

be neglected and the Fourier-transformed Green functions
become

G̃KKðzÞ ¼ −
1

Σ2
K þ z2 þ 2izγK

; ðB7Þ

and

G̃ABðzÞ ¼−
2
ffiffiffiffiffiffiffiffiffiffi
γAγB

p
eidz

dðΣ2
Aþ z2þ 2izγAÞðΣ2

Bþ z2þ 2izγBÞ
: ðB8Þ

By computing the inverse Fourier transform of Eqs. (B7)
and (B8) and imposing the causality condition, one obtains

exactly the solutions (B2) and (B3), respectively. This
proves that, when 4γAγB ≪ d2jΣ2

AΣ2
Bj, the solutions of

Eq. (B1) for the Green functions at times t ≥ 2d can be
approximated to the ones at times 0 ≤ t < 2d, namely
Eq. (B2) for GKKðtÞ and Eq. (B3) for GBAðtÞ ¼ GABðtÞ.
The validity of this approximation in the range jΣ2

Kj ≫
2
ffiffiffiffiffiffiffiffiffiffi
γAγB

p
=d can be seen by comparing Fig. 3, where the

approximation is performed, with Fig. 9 given by numerical
calculations without performing the approximation.
Indeed, from Fig. 9, we see that, by increasing jΣ2j, the
behavior of the capacity converges to the one predicted
with the approximation in Fig. 3. The same behavior can be
seen by comparing Figs. 5 and 10.

APPENDIX C: NOISE CALCULATION

We can evaluate the noise produced by the channel
through the determinant of the matrix N from

NðtÞ ¼ TBBðtÞσBBð0ÞTBBðtÞT

þ
Z

t

0

ds
Z

t

0

ds0ηðt − sÞνðs; s0Þηðt − s0Þ; ðC1Þ

which we denoted by W ≔ detN. To do that, we use the
elements of the noise kernel (45) and (44). Thus, starting
from Eq. (C1), we calculate the elements of N.
The diagonal elements of the noise kernel (45) leads

to a divergence on the integral (C1). However, by using
Eq. (A7) for finite size detectors and computing numeri-
cally the integral in Eq. (C1), the result coincides to the one
we analytically obtain by considering

νKKðt − t0Þ ∼ −
δðt − t0Þ
4
ffiffiffiffiffiffi
2π

p
σ
: ðC2Þ

The reason is that, by applying the approximation (41),
we have

−
δðt− t0Þ
4
ffiffiffiffiffiffi
2π

p
σ
¼ −

1

4π
ffiffiffiffiffiffi
2π

p
σ

ffiffiffiffiffiffi
2π

p
σ

πðt− t0Þ2 þ 2πσ2
∼−

1

4π2
1

ðt− t0Þ2 :

ðC3Þ

In this way, Eq. (C2) reduces exactly to Eq. (45) in the
limit σ → 0. The divergence that Eq. (45) leads to the
integral in Eq. (C1) is the same divergence it would occur
by considering Eq. (C2) in the limit σ → 0. We use then
Eq. (C2) for the diagonal elements of the noise kernel to
obtain analytic solutions for the noise W.
The main contribution to the quantity W comes from

the terms including the diagonal elements of the noise
kernel (45). The other terms are in fact smaller at least by a
factor σ=d ≪ 1. The first term TBBσBBð0ÞTBB of Eq. (C4)
has a comparable magnitude such that it can also be
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considered negligible when σ ≪ d. At this point, an analytical solution is possible. In this appendix, we report exclusively
the one for identical detectors, which reads

W ¼ 1

32π64d4γ2γ12Σ Σ8σ2
½−4Σ8ðe2ðd−tÞγγ3θðt − dÞðð1þ ðt − dÞ2γ2ΣÞ cosh ð2ðt − dÞγΣÞ

− 2ðd − tÞγΣ sinh ð2ðd − tÞγΣÞÞ þ 2d2e−2tγγγ4Σsinh
2ðtγΣÞÞ2

þ ðθðt − dÞð−e−2ðt−dÞγγ3ð4γ5 − 4ðt − dÞγ4Σ2 − 10ðt − dÞγ2Σ4 − 6ðt − dÞΣ6 þ γΣ4ð9þ 2ðt − dÞ2Σ2Þ
− γ3Σ2ð−11 − 2ðt − dÞ2Σ2ÞÞ cosh ð2ðt − dÞγΣÞ þ e−2ðt−dÞγγ3γΣð4γ4 − 4ðt − dÞγ3Σ2

− 8ðt − dÞγΣ4 þ Σ4ð5þ 2ðt − dÞ2Σ2Þ þ γ2Σ2ð9þ 2ðt − dÞ2Σ2ÞÞ sinh ð2ðd − tÞγΣÞÞ
− 2d2e−2tγγγ4ΣΣ4ðγ cosh ð2tγΣÞ þ γΣ sinh ð2tγΣÞÞÞ
× ðθð−dþ tÞð−e2ðd−tÞγγ3ð−2ð−dþ tÞγ2Σ2 þ 2ðd − tÞΣ4 − γΣ2ð1þ 2ðt − dÞ2Σ2Þ þ γ3ð1 − 2ðt − dÞ2Σ2ÞÞ
× cosh ð2ðd − tÞγΣÞ − e2ðd−tÞγγ3γΣð−4ð−dþ tÞγΣ2 − Σ2ð1þ 2ðt − dÞ2Σ2Þ
þ γ2ð−1 − 2ðt − dÞ2Σ2Þ sinh ð2ðd − tÞγΣÞÞ þ 2d2γγ4ΣΣ2e−2tγðγ cosh ð2tγΣÞ − γΣ sinh ð2tγΣÞÞÞÞ�: ðC4Þ

The expression for the case of different detectors is even more complicated, and we choose not to report it because it would
not improve the understanding.

APPENDIX D: USEFUL EXPRESSIONS

In this appendix, we report a few useful expressions in order to avoid encumbering the main text.
Through Eq. (55), we showed that the late time capacity C∞, when Σ2 > 0, is a monotonic function of the ratio τffiffiffiffi

W
p .

The latter is finite for t → ∞ and is given by the following expression:

τffiffiffiffiffi
W

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

512πσ2Σ8γ2γΣ
Σ4γ2γΣ þ 8γ6γΣ þ 12γ5Σ2 þ 8γ4Σ2γΣ þ 8γ7 þ 4γ3Σ4 þ 4d2Σ4γ3Σðγ þ γΣÞ2e2dðγΣ−γÞ

s
: ðD1Þ

From Eqs. (B2) and (B3), we can obtain an analytic expression for transmissivity τ in the different detectors case, when
jΣ2

i j ≫ 2
ffiffiffiffiffiffiffiffiffiffi
γAγB

p
=d, with i ¼ fA;Bg. It reads

τ ¼ 4γAγBθðt − dÞ
d2ð4γAγBðΣ2

A þ Σ2
BÞ − 4Σ2

Bγ
2
A − 4Σ2

Aγ
2
B þ ðΣ2

A − Σ2
BÞ2Þ

×

�
e−2γAðt−dÞ þ e−2γBðt−dÞ − e−ðγAþγBÞðt−dÞð2 cosh ðγΣA

ðt − dÞÞ cosh ðγΣB
ðt − dÞÞ

−
Σ2
A þ Σ2

B þ 2γAγB
γΣA

γΣB

sinh ðγΣA
ðt − dÞÞ sinh ðγΣB

ðt − dÞÞÞ
�
; ðD2Þ

where we have defined γΣi
≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i þ Σ2

i

p
, with i ¼ fA;Bg.
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