001010398 001__ 1010398
001010398 005__ 20250204113733.0
001010398 0247_ $$2doi$$a10.1007/s11075-023-01618-6
001010398 0247_ $$2ISSN$$a1017-1398
001010398 0247_ $$2ISSN$$a1572-9265
001010398 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03038
001010398 0247_ $$2WOS$$aWOS:001048063000004
001010398 037__ $$aFZJ-2023-03038
001010398 041__ $$aEnglish
001010398 082__ $$a510
001010398 1001_ $$0P:(DE-HGF)0$$aGrajewski, Matthias$$b0$$eCorresponding author
001010398 245__ $$aDetecting and approximating decision boundaries in low-dimensional spaces
001010398 260__ $$bSpringer$$c2024
001010398 3367_ $$2DRIVER$$aarticle
001010398 3367_ $$2DataCite$$aOutput Types/Journal article
001010398 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712139396_18246
001010398 3367_ $$2BibTeX$$aARTICLE
001010398 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010398 3367_ $$00$$2EndNote$$aJournal Article
001010398 520__ $$aA method for detecting and approximating fault lines or surfaces, respectively, or decision curves in two and three dimensions with guaranteed accuracy is presented. Reformulated as a classification problem, our method starts from a set of scattered points along with the corresponding classification algorithm to construct a representation of a decision curve by points with prescribed maximal distance to the true decision curve. Hereby, our algorithm ensures that the representing point set covers the decision curve in its entire extent and features local refinement based on the geometric properties of the decision curve. We demonstrate applications of our method to problems related to the detection of faults, to multi-criteria decision aid and, in combination with Kirsch’s factorization method, to solving an inverse acoustic scattering problem. In all applications we considered in this work, our method requires significantly less pointwise classifications than previously employed algorithms.
001010398 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001010398 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010398 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
001010398 773__ $$0PERI:(DE-600)2002650-X$$a10.1007/s11075-023-01618-6$$p1503-1537$$tNumerical algorithms$$v95$$x1017-1398$$y2024
001010398 8564_ $$uhttps://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.pdf$$yOpenAccess
001010398 8564_ $$uhttps://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.gif?subformat=icon$$xicon$$yOpenAccess
001010398 8564_ $$uhttps://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001010398 8564_ $$uhttps://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001010398 8564_ $$uhttps://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001010398 909CO $$ooai:juser.fz-juelich.de:1010398$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010398 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aFachhochschule Aachen$$b0
001010398 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
001010398 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001010398 9141_ $$y2024
001010398 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
001010398 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010398 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
001010398 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-23$$wger
001010398 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010398 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
001010398 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUMER ALGORITHMS : 2022$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001010398 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
001010398 920__ $$lyes
001010398 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001010398 980__ $$ajournal
001010398 980__ $$aVDB
001010398 980__ $$aUNRESTRICTED
001010398 980__ $$aI:(DE-Juel1)JSC-20090406
001010398 9801_ $$aFullTexts