001     1010398
005     20250204113733.0
024 7 _ |a 10.1007/s11075-023-01618-6
|2 doi
024 7 _ |a 1017-1398
|2 ISSN
024 7 _ |a 1572-9265
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03038
|2 datacite_doi
024 7 _ |a WOS:001048063000004
|2 WOS
037 _ _ |a FZJ-2023-03038
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Grajewski, Matthias
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Detecting and approximating decision boundaries in low-dimensional spaces
260 _ _ |c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712139396_18246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A method for detecting and approximating fault lines or surfaces, respectively, or decision curves in two and three dimensions with guaranteed accuracy is presented. Reformulated as a classification problem, our method starts from a set of scattered points along with the corresponding classification algorithm to construct a representation of a decision curve by points with prescribed maximal distance to the true decision curve. Hereby, our algorithm ensures that the representing point set covers the decision curve in its entire extent and features local refinement based on the geometric properties of the decision curve. We demonstrate applications of our method to problems related to the detection of faults, to multi-criteria decision aid and, in combination with Kirsch’s factorization method, to solving an inverse acoustic scattering problem. In all applications we considered in this work, our method requires significantly less pointwise classifications than previously employed algorithms.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 1
|u fzj
773 _ _ |a 10.1007/s11075-023-01618-6
|0 PERI:(DE-600)2002650-X
|p 1503-1537
|t Numerical algorithms
|v 95
|y 2024
|x 1017-1398
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1010398/files/s11075-023-01618-6.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1010398
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Fachhochschule Aachen
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169421
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-23
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUMER ALGORITHMS : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21