001010399 001__ 1010399
001010399 005__ 20231027114412.0
001010399 0247_ $$2doi$$a10.1016/j.neuroimage.2023.120292
001010399 0247_ $$2ISSN$$a1053-8119
001010399 0247_ $$2ISSN$$a1095-9572
001010399 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03039
001010399 0247_ $$2pmid$$a37572766
001010399 0247_ $$2WOS$$aWOS:001070481100001
001010399 037__ $$aFZJ-2023-03039
001010399 082__ $$a610
001010399 1001_ $$0P:(DE-Juel1)180946$$aAntonopoulos, Georgios$$b0
001010399 245__ $$aA systematic comparison of VBM pipelines and their application to age prediction
001010399 260__ $$aOrlando, Fla.$$bAcademic Press$$c2023
001010399 3367_ $$2DRIVER$$aarticle
001010399 3367_ $$2DataCite$$aOutput Types/Journal article
001010399 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1693304519_18991
001010399 3367_ $$2BibTeX$$aARTICLE
001010399 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010399 3367_ $$00$$2EndNote$$aJournal Article
001010399 520__ $$aVoxel-based morphometry (VBM) analysis is commonly used for localized quantification of gray matter volume (GMV). Several alternatives exist to implement a VBM pipeline. However, how these alternatives compare and their utility in applications, such as the estimation of aging effects, remain largely unclear. This leaves researchers wondering which VBM pipeline they should use for their project. In this study, we took a user-centric perspective and systematically compared five VBM pipelines, together with registration to either a general or a study-specific template, utilizing three large datasets (n each). Considering the known effect of aging on GMV, we first compared the pipelines in their ability of individual-level age prediction and found markedly varied results. To examine whether these results arise from systematic differences between the pipelines, we classified them based on their GMVs, resulting in near-perfect accuracy. To gain deeper insights, we examined the impact of different VBM steps using the region-wise similarity between pipelines. The results revealed marked differences, largely driven by segmentation and registration steps. We observed large variability in subject-identification accuracies, highlighting the interpipeline differences in individual-level quantification of GMV. As a biologically meaningful criterion we correlated regional GMV with age. The results were in line with the age-prediction analysis, and two pipelines, CAT and the combination of fMRIPrep for tissue characterization with FSL for registration, reflected age information better.
001010399 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001010399 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010399 7001_ $$0P:(DE-Juel1)177823$$aMore, Shammi$$b1
001010399 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b2$$ufzj
001010399 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3
001010399 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4
001010399 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b5$$eCorresponding author
001010399 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2023.120292$$gp. 120292 -$$p120292 -$$tNeuroImage$$v279$$x1053-8119$$y2023
001010399 8564_ $$uhttps://juser.fz-juelich.de/record/1010399/files/1-s2.0-S1053811923004433-main.pdf$$yOpenAccess
001010399 8564_ $$uhttps://juser.fz-juelich.de/record/1010399/files/Acomparison_of_VBM_pipelines_reviewed.pdf$$yOpenAccess
001010399 8767_ $$d2023-09-06$$eAPC$$jZahlung erfolgt$$z3150
001010399 8767_ $$d2023-09-06$$eAPC$$jZahlung angewiesen$$zKostenstelle erfragt
001010399 909CO $$ooai:juser.fz-juelich.de:1010399$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180946$$aForschungszentrum Jülich$$b0$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180946$$a HHU Düsseldorf$$b0
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177823$$aForschungszentrum Jülich$$b1$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177823$$a HHU Düsseldorf$$b1
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b2$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185083$$a HHU Düsseldorf$$b2
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b3
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131684$$a HHU Düsseldorf$$b4
001010399 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
001010399 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b5
001010399 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001010399 9141_ $$y2023
001010399 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001010399 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001010399 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001010399 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001010399 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12
001010399 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010399 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001010399 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001010399 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001010399 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010399 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001010399 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001010399 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001010399 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001010399 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001010399 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001010399 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
001010399 920__ $$lyes
001010399 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001010399 980__ $$ajournal
001010399 980__ $$aVDB
001010399 980__ $$aUNRESTRICTED
001010399 980__ $$aI:(DE-Juel1)INM-7-20090406
001010399 980__ $$aAPC
001010399 9801_ $$aAPC
001010399 9801_ $$aFullTexts