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A B S T R A C T

Voxel-based morphometry (VBM) analysis is commonly used for localized quantification of gray matter volume (GMV). Several alternatives exist to implement a
VBM pipeline. However, how these alternatives compare and their utility in applications, such as the estimation of aging effects, remain largely unclear. This leaves
researchers wondering which VBM pipeline they should use for their project. In this study, we took a user-centric perspective and systematically compared five
VBM pipelines, together with registration to either a general or a study-specific template, utilizing three large datasets (n> 500 each). Considering the known effect
of aging on GMV, we first compared the pipelines in their ability of individual-level age prediction and found markedly varied results. To examine whether these
results arise from systematic differences between the pipelines, we classified them based on their GMVs, resulting in near-perfect accuracy. To gain deeper insights,
we examined the impact of different VBM steps using the region-wise similarity between pipelines. The results revealed marked differences, largely driven by
segmentation and registration steps. We observed large variability in subject-identification accuracies, highlighting the interpipeline differences in individual-level
quantification of GMV. As a biologically meaningful criterion we correlated regional GMV with age. The results were in line with the age-prediction analysis,
and two pipelines, CAT and the combination of fMRIPrep for tissue characterization with FSL for registration, reflected age information better.
1. Introduction

Analysis of brain structure has provided important insights regard-
ing its organization in health and disease. T1-weighted (T1w) images
obtained using magnetic resonance imaging (MRI) are commonly used
for this purpose. However, raw T1w images cannot be compared di-
rectly due to their semiquantitative nature and inter- and intrasubject
variability (Jovicich et al., 2009). Volumetric analysis of T1w images
using voxel-based morphometry (VBM) (Wright et al., 1995; Ashburner
and Friston, 2000) allows the investigation of the volumetric com-
position of brain tissues across subjects. It estimates tissue volume
in each voxel and brings individual brains in a common reference
space permitting comparison. VBM analysis has provided a plethora of
valuable insights, for instance, in neurodegenerative diseases (Matsuda,
2013; Lin et al., 2013; Khagi et al., 2021; Colloby et al., 2014; Brewer,
2009) and psychiatric disorders (Yousef et al., 2020).

VBM has been successfully applied to study aging (Good et al., 2001;
Tisserand et al., 2004; Bourisly et al., 2015). Recently, prediction of
individuals’ age based on VBM-derived information has proven to be
a validated proxy for brain integrity and overall health (Habes et al.,
2016; Koutsouleris et al., 2014-09-01; Cole et al., 2018), and promising
for individualized clinical applications (Franke et al., 2010; Jonsson
et al., 2019; Koutsouleris et al., 2014-09-01; Su et al., 2011; Varikuti
et al., 2018). Brain-age prediction is an important and widely studied
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topic that aims to estimate the trajectory of healthy brain aging (Franke
and Gaser, 2019; Baecker et al., 2021).

To estimate the GMV from T1w images, some specific steps must
be performed. The main steps of a VBM pipeline are as follows: (i)
Segmentation creates probability maps where each voxel is assigned
a probability of belonging to specific brain tissues, usually gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). Brain extrac-
tion, which is the process of removing the skull from an image and
leaving only actual brain tissues and CSF, is also a segmentation process
but in some cases is performed prior to segmentation of GM, WM and
CSF.

(ii) Spatial registration/normalization to a reference brain space
is performed so that anatomical regions are aligned. The reference
space can be either a general template (e.g., MNI-152) or a study-/data-
specific template (henceforth referred to as data-template) (Su et al.,
2022; Zhang et al., 2021; Li et al., 2018). Data-templates are mainly
used when comparing healthy subjects to patients to avoid bias due to
general templates constructed from healthy populations. Several ways
exist to create a data-template, and they are often created to match a
standard space, such as the MNI space. Most VBM pipelines come with
a general template.
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(iii) Modulation of the normalized tissue estimates aims at preserv-
ing the original amounts of tissue after spatial registration. To do so,
normalized images are adjusted by the amount of local volume changes.

Since the introduction of VBM in 1995 (Wright et al., 1995), several
alternatives and a multitude of options for each of the steps have been
proposed. Even though various VBM pipelines utilize the same steps,
the order of the steps may vary, and each step might use a different
algorithm with several configurable options. Moreover, the pipelines
can use those steps in a different order or perform some of them
simultaneously and/or iteratively. It is also possible to create hybrid
pipelines by combining the steps from different tools. Furthermore,
optional steps, for example, whether to create a data template or use
a general template provided by a tool, add to the already vast number
of choices. Consequently, even if a user chooses an off-the-shelf VBM
ipeline is not completely absolved of further choices. How the outputs
f VBM pipelines compare and their utility in different applications
emain poorly studied, which can lead to suboptimal choices (Peng
t al., 2021; Rajagopalan and Pioro, 2015; Dinsdale et al., 2021).

Previous work comparing VBM pipelines indeed provides evidence
or differences. A comprehensive comparison between Computational
natomy Toolbox (CAT) (Gaser and Dahnke, 2016) version 12.7, two
SL-based and a hybrid (still FSL (Smith et al., 2004) dependent)
ipelines has shown that the choice of preprocessing pipeline has an
mpact both in age prediction and sex classification (Zhou et al., 2022).
he same study showed that regions driving the results are pipeline
ependent, while the choice of the templates used for registration,
eneral or data-template, has little or no impact. FSL and SPM (Fris-
on Karl et al., 2007) yield different outcomes, especially for cortical
egions (Popescu et al., 2016). A comparison focusing on registration
nd segmentation steps of SPM and FSL concluded that these pre-
rocessing steps drive the regions identified in multiple amyotrophic
ateral sclerosis (Rajagopalan and Pioro, 2015). Segmentation and reg-
stration as implemented in SPM8 newseg, SPM8 DARTEL (Ashburner,
007), and FSLVBM were found to have substantial influence on GMV
stimates and their relationship to age (Callaert et al., 2014). This study
dditionally concluded that pipelines with limited degrees of freedom
or local deformations might overestimate between-group differences.
inally, the selection of tissue probability maps (TPMs) as priors for
egmentation systematically impacts the segmentation outcome and,
n turn, affects the statistical estimates (Haynes et al., 2020). The
AT12 VBM pipeline was found to perform better in the detection of
olumetric alterations in temporal lobe epilepsy compared to the VBM8
oolbox (Matsuda et al., 2012; Farokhian et al., 2017a).

Several studies have investigated the effects of individual VBM steps
nd their parametrization. A comparison of 14 deformation algorithms
sed for registration found that SyN (Avants et al., 2008) from the
dvance Normalization Toolkit (ANTs) (Avants et al., 2011a) and
ARTEL (CAT) were among those with the best performance, with
yN exhibiting the highest consistency across subjects (Klein et al.,
009) as well as being among the most robust to noise, partial vol-
me effects and magnetic field inhomogeneities (Ou et al., 2014).
egmentation algorithms from SPM, ANTs and FSL showed relatively
mall differences in controls, but significant differences appeared when
omparing brains with atrophies, suggesting that the segmentation
lgorithm should be selected according to the brain characteristics
f the study-population (Johnson et al., 2017). Dadar and colleagues
ompared six segmentation tools and confirmed significant differences
etween the tools as well as within-tool differences based on inter-
canner analysis (Dadar and Duchesne, 2020). For brain extraction,
lthough FSL-BET has been reported to have low performance (Johnson
t al., 2017), it does not influence subsequent segmentation (Klauschen
t al., 2008). A comparison of SPM12, SPM8 and FreeSurfer5.3 (Dale
t al., 1999) showed that SPM12 estimates of total intracranial volume
TIV) align better with manual segmentation (Malone et al., 2015).
PM-based estimates in autism spectrum disorder and typically de-
2

eloping controls were closest to manual segmentation in terms of (
TIV, followed by FreeSurfer, while FSL appeared to underestimate
TIV (Katuwal et al., 2016).

Taken together, different VBM pipelines produce different out-
comes. The disagreement in VBM pipelines hinders precise localization
and valid interpretation of tissue volume in the downstream analysis,
e.g., atrophy in patients with multiple sclerosis (Sepulcre et al., 2006;
Ceccarelli et al., 2008; Battaglini et al., 2009). To date, there is no
standard method to calculate GMV or guidelines on which implemen-
tation of VBM is appropriate for a study at hand, e.g., age prediction.
Additionally, the interaction of different algorithms and parameters in
each step of VBM for estimating GMV and their effect on age esti-
mates across the adult life-span, has not been thoroughly investigated.
Moreover, the utility of a data-template created from healthy subjects
and how it compares with a general template, especially in cross-site
studies, remains unanswered. Here, to fill this gap, utilizing three large
datasets (each n>500), we compared and evaluated five VBM pipelines
including two off-the-shelf workflows and three modularly constructed
pipelines utilizing commonly used neuroimaging tools. Each pipeline
was implemented in two versions, one using a general template and
one using a data-template, resulting in a total of 10 VBM pipelines. To
remain consistent with our user-centric approach and developer guide-
lines, we adopted the default parameters unless there were specific
recommendations from the developers (Tustison et al., 2013). First, we
investigated whether different VBM pipelines produce GMV estimates
that lead to different results in machine-learning-based predictions of
individuals’ chronological age. We also calculated regional correlation
to age, as GMV is known to decrease with age in healthy subjects. This
extrinsic evaluation provides a more objective and utilitarian proxy
for comparison (Cole et al., 2017b; Franke and Gaser, 2019; Varikuti
et al., 2018; Sowell et al., 2003) and a criterion based on biological
factors. Additionally, we showed that the pipelines indeed produce
distinct patterns of GMV using machine-learning-based classification.
Specifically, we address the following questions:

• How do the pipelines differ at the region- and the subject-level?
• What impact do brain extraction, segmentation and registration have

on GMV?
• What is the effect of using a data-template compared to a general
template?

• How do the pipeline outcomes compare in univariate and multi-
variate analyses?

• Which pipeline better reflects brain aging and performs best in
brain-age prediction?

ith this comprehensive and systematic comparative analysis of VBM
ipelines, we aim to provide essential information and recommenda-
ions to researchers to help them select the VBM pipeline that best
atches their research goals.

. Materials and methods

.1. Datasets

We analyzed T1w images of healthy individuals from three large
atasets covering the adult lifespan,

eNKI (Nooner et al., 2012): population based sample of n = 953
ubjects, of which 573 had no psychiatric or neurological disorders or
edication at the time of the scan (48.1 ± 17.2 years, 630 female).
amCAN (Taylor et al., 2017; Shafto et al., 2014): n = 634 aging indi-
iduals without serious psychiatric conditions or cognitive impairment
54.8 ± = 18.4 years, 320 female). IXI (https://brain-development.org/
xi-dataset/): multisite sample of n = 582 normal and healthy subjects

49.4 ± 16.7 years, 324 female). (Table S.1 in Supplementary Material)

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
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2.2. Pipelines

CAT (Gaser and Dahnke, 2016), a popularly used off-the-shelf VBM
tool, is a successor of the first VBM pipeline implemented in SPM (Ash-
burner and Friston, 2000). Here, we used the latest version CAT12.8
(r1813). Several general-purpose neuroimaging tools also provide func-
tionality that can be used to create VBM pipelines. FSLVBM (Douaud
et al., 2007) uses tools from FSL (Smith et al., 2004) and is also widely
used. ANTs (Avants et al., 2011a) provides broad image processing and
image analysis functionality, including all functions needed to perform
VBM. Hybrid VBM pipelines that combine the functionality of different
tools can be constructed, e.g., using fMRIPrep (Esteban et al., 2019),
which performs brain extraction using ANTs and then performs the rest
of the steps using FSL.

We devised five VBM pipelines following the recommended steps
and settings in the literature (Avants et al., 2011a): ANTs, ANTs-FSL,
fMRIPrep-FSL, FSLVBM, and CAT. These pipelines were selected to
reflect the choices that are common practice and easy to use. We used
each pipeline with a standard template (the default templates for CAT
and FSLVBM) irrespective of the dataset (general template) and with
a dataset-specific template that was created and used for registration
(data-template). Together, this resulted in ten pipelines.

2.2.1. ANTs
We used ANTs version 2.2.0. First, each scan was corrected using the

N4 bias field correction (Tustison et al., 2010) and then segmented to
select intracranial tissues using Atropos-based brain extraction (Avants
et al., 2011b). Next, Atropos segmentation initialized with K-means was
applied to segment the images into GM, WM and CSF. The GM-map
images were registered to a template (general or data-specific) using
a sequence of transformations. First, rigid body and affine transfor-
mations were applied, followed by a nonlinear BsplineSyN transform
with the parameters set as in Tustison and Avants (2013). The Jaco-
bian matrix from the spatial transformation was used to modulate the
segmented GM. Data-specific templates were created using the ANTs
build template method with default values. To create the template
images, the transformations were averaged and used iteratively (Avants
et al., 2010, 2011a). To keep the template shape stable over multiple
iterations of template building, the inverse average warp was calculated
and applied to the template image.

To facilitate the analysis, the data-template process was initialized
using a general MNI template. Therefore, the final data-template was
also in the MNI space. For all processes requiring tissue masks and
templates as well as for the registration to MNI, we used the ICBM 152
Non-linear Asymmetrical template version 2009a and corresponding
tissue probability maps (Fonov et al., 2009, 2011).

2.2.2. FSLVBM
We used FSL version 6.0. The images were prepared by automati-

cally reorienting and then cropping part of the neck and lower head.
Then, BET was used to extract the intracranial part of the brain,
which was then segmented into GM, WM and CSF using FAST. Data-
specific templates were created following FSLVBM’s process utilizing
all GM images from a given dataset. GM segmented images were
affinely registered to the ICBM-152 GM template, concatenated and
averaged. This averaged image was then flipped along the 𝑥-axis,
and the two mirror images were then reaveraged to obtain a first-
pass, study-specific 𝑎𝑓𝑓𝑖𝑛𝑒 GM template. Second, GM images were
eregistered to this 𝑎𝑓𝑓𝑖𝑛𝑒 GM template using nonlinear registration,

averaged and flipped along the 𝑥-axis. Both mirror images were then
averaged to create the final symmetric, study-specific, 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 GM
template. The resulting data-template was in the MNI space. The GM
images were then nonlinearly registered to the template (either general
or data-specific) and modulated. As the general template, we used the
FSL-provided template (see Table 1).
3

2.2.3. fMRIPrep-FSL
The reportedly poor quality of BET in brain extraction might lead

to spurious results (Johnson et al., 2017); thus, we decided to test
a pipeline that uses a better brain extraction as provided by ANTs
followed by FSL for the rest of VBM processing. As fMRIPrep has
been well validated and is gaining popularity, we chose to use the
output of the fMRIPrep’s structural processing. In this hybrid pipeline
for image preparation and segmentation, we used fMRIPrep version
stable 20.0.6 (Esteban et al., 2019), which uses ANTs version 2.1.0.
Each T1w volume was corrected for intensity nonuniformity (INU)
using N4BiasFieldCorrection (Tustison et al., 2010) and skull-stripped
using ‘antsBrainExtraction.sh‘ (using the OASIS template). Brain tissue
segmentation into CSF, WM and GM was then performed using FSL
FAST (Zhang et al., 2001) (as used by the fMRIPrep FSL v5.0.9).
This FAST parametrization diverges from the one in FSLVBM in the
following parameters: (i) the Markov random field (MRF) beta value
for the main segmentation phase was set to H = 0.2, while the default
value in FSLVBM was 0.1, and (ii) the MRF beta value for mixeltype
was R = 0.2, while the default in FSLVBM was 0.3. Template creation,
spatial normalization, and modulation were identical to the FSLVBM
pipeline.

2.2.4. ANTs-FSL
The exact same processing, as mentioned above in the ANTs pipeline,

was used to prepare the images, correct bias field noise, perform brain
extraction and finally perform tissue segmentation using ANTs’ Atropos.
The creation of a data-specific template, registration and modulation
were implemented as in the FSLVBM pipeline. Note that the difference
between this pipeline and the fMRIPrep-FSL pipeline is the tissue
segmentation tool used.

2.2.5. CAT
CAT12.8 was used based on SPM12 (v7771) using MATLAB

(R2017b) and compiled for containerization in Singularity (2.6.1). CAT
provides a complete VBM pipeline including denoising with spatial-
adaptive nonlocal means, bias-correction, skull-stripping, and linear
and nonlinear spatial registration. Images are segmented by an adaptive
maximum a-posteriori approach (Rajapakse et al., 1997) with partial
volume model (Tohka et al., 2004). For nonlinear transformation,
the geodesic shooting algorithm (Ashburner and Friston, 2011) is
used. As the default template, an IXI-based template transformed
to MNI152NLin2009cAsym is provided. For the data-template, ini-
tially, all structural T1 images are segmented into GM, WM, and
CSF and spatially coregistered to the MNI standard template using
affine registration. The affine tissue segments were used to create the
new sample-specific geodesic shooting template that consists of four
iterative nonlinear normalization steps.

Table 1 summarizes the VBM steps of each pipeline we utilized in
our analyses.

2.3. Parcellation scheme and quality control

To decrease the dimensionality of the data and thereby facilitate
informative comparison and the use of machine-learning approaches,
we extracted region-level averages. However, to preserve good spa-
tial resolution, we selected a high granularity parcellation scheme. A
combination of three atlases covering the whole brain and together
constituting 1073 regions of interest (ROIs) was used: 1000 cortical
regions from the Schaefer atlas (Schaefer et al., 1991), 36 subcortical
regions from the Brainnetome Atlas (Fan et al., 2016) and 37 cerebellar
regions (Buckner et al., 2011). Regional GMV values were calculated as
the average of nonzero voxels within each region.

ANTs segmentation (Atropos), which was initiated with k-means, in
some cases returned tissues in a different order, resulting in selecting
the WM instead of the GM for further analysis. Therefore, we employed
the following quality check to ensure that selected tissue represented
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Table 1
Software/algorithm used for the main VBM steps in our analysis pipelines.
Pipeline Skull stripping Segmentation Template

(general/data-specific)
Registration/
Modulation

ANTs ANTs Brain Extraction Atropos ICBM MNI152Nlin2009a ANTsRegistrationAntsBuildtemplate

ANTs-FSL ANTs Brain Extraction Atropos ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

fMRIPrep-FSL ANTs Brain Extraction FAST ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

FSLVBM BET FAST ICBM MNI152Nlin6th generation FNIRTfslvbm_2_template

CAT CAT CAT ICBM MNI152Nlin2009c based CATCAT
GM. First, we discarded individuals who had a ratio of the mean of GM
voxels over the mean of WM and CSF voxels of less than 1.5. Further-
more, images that were close to the 1.5 threshold as well as randomly
sampled images were visually inspected for quality of segmentation.
Because developing a thorough quality check or tackling this issue
inside Atropos is out of the scope of this work, the threshold for the
ratio of mean GM over WM and CSF was experimentally identified.
Although CAT has an internal quality control method, for consistency,
we applied our test to all pipelines. We retained only subjects who
passed the quality checks across all the pipelines.

2.4. Age prediction

We performed machine-learning-based analysis to predict the age
of each subject using regional GMVs from each pipeline as features.
We chose this as a suitable test given that age is reliably associated
with GMV (Cole et al., 2017b; Franke and Gaser, 2019; Varikuti et al.,
2018; Sowell et al., 2003) and because of the increasing importance of
brain-age as a proxy for overall brain health (Cole et al., 2017b; Cole
and Franke, 2017; Won et al., 2020; More et al., 2022). All features
were standardized by removing the mean and scaling to unit variance
in a cross-validation (CV)-consistent manner (More et al., 2021). We
utilized four machine-learning algorithms: relevance vector regression
(RVR) (Tipping, 2001), Gaussian process regression (GPR) (Rasmussen
and Williams, 2005), least absolute shrinkage and selection operator
(LASSO) (Santosa and Symes, 1986; Tibshirani, 1996), and kernel ridge
regression (KRR) (Vovk, 2013), in a nested 5-fold CV scheme repeated
5 times (Poldrack et al., 2020). The age prediction performance was
evaluated using the mean absolute error (MAE). To ensure that differ-
ences were not driven by factors other than the pipelines, we used the
same data (subjects and regions) and models for each pipeline.

The evaluation was performed in two set ups, intradataset, and
interdataset. In the interdataset evaluation, the models were trained
using two datasets and then used to predict the third hold-out dataset.
This analysis was performed for each pipeline separately.

2.5. Classification of pipelines

To confirm the existence of systematic differences in the outcomes
of the pipelines, we performed machine-learning-based predictive anal-
ysis based on the multivariate patterns of regional GMV. The idea
behind this analysis is that if a model can classify the pipeline produc-
ing a GMV image with a high accuracy, that would indicate that the
model learned systematic differences between the VBM pipelines. We
performed 10-class classification with subjects’ regional GMVs as fea-
tures and the pipelines as class labels. The features were standardized
by removing the mean and scaling to unit variance in a CV-consistent
manner (More et al., 2021) in two ways: (i) within each feature and
(ii) within each subject. The former is standard preprocessing, while we
implemented the latter to guard against trivial biases such as magnitude
shifts. We used a linear support vector machine (SVM) with the default
4

cost parameter of C = 1 in a 5-fold CV scheme repeated 5 times.
2.6. Individual-level identification

We examined the within-subject consistency of GMV patterns when
processed by different pipelines. To do so, we identified subjects across
pipelines using a nearest neighbor search. Using each pipeline as a
reference (query), we tried to match each subject with all the subjects
of each other pipeline (database). As an identification metric, we used
Pearson’s correlation between two subjects’ regional GMVs (Finn et al.,
2015; Amico and Goñi, 2018). Each subject was matched with the
subject from another pipeline with the highest correlation coefficient.
The identification performance between two pipelines was calculated
using the differential identifiability (Idiff) metric (Amico and Goñi,
2018).

2.7. Region-level comparison

To obtain a better understanding of regions driving the differences
between pipelines, we assessed the similarity in regional GMV estimates
from different pipelines using univariate statistical analysis. These anal-
yses were performed for subjects from all datasets combined as well
as separately for each dataset. We estimated similarity in regional
GMVs across subjects using Pearson’s correlation coefficient for all
possible pipeline pairs (in total 45). To investigate whether the size
of parcels affects the regional similarities, we calculated for each ROI
the median of correlation coefficients across the pairs of pipelines and
correlated it with the number of voxels per region (see Figure S.6 in
the Supplementary Material).

For all arithmetic operations on Pearson’s 𝑟 values, first Fisher’s 𝑧
transform was applied, and then the result was transformed back to
Pearson’s 𝑟 value.

2.8. Extrinsic evaluation of similarity between pipelines

The pipeline comparisons described above are intrinsic in nature.
Thus, although they provide important information regarding differ-
ences between the pipelines, they do not provide information regarding
the correctness of the pipelines in estimating the GMV. Such a correct-
ness assessment, although desirable, cannot currently be achieved due
to a lack of ground truth data. Instead, we compared the pipelines based
on their utility in capturing age-related information.

We first tested to what degree regional GMV estimates from each
pipeline reflect subjects’ age using univariate statistical analysis. To do
so, we computed Pearson’s 𝑟 between the regional GMVs and subjects’
ages for each pipeline separately. The resulting 𝑝 values were corrected
to control for the familywise error rate (Holm, 1979) due to multiple
comparisons, again for all data combined as well as separately for each
pipeline. We then performed an analysis of variance (ANOVA) to test
whether the means of the correlation coefficients were significantly
different.

Machine-learning-based analyses were performed using scikit-learn

(Pedregosa et al., 2011).
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3. Results

3.1. Preprocessing and data-templates

For CAT and fMRIPrep, less than 0.4% of all subjects failed the
preprocessing. For CAT, all outcomes passed our quality check. For
FSLVBM, less than 2% of the subjects failed the QC. For fMRIPrep-
FSL, there were slightly fewer subjects who failed QC than for FSLVBM.
A considerable number of subjects failed ANTs segmentation (13% for
eNKI, 5% for CamCAN and 12% for IXI). The QC results for the hybrid
ANTs-FSL pipeline were similar to those of ANTs. The final number of
subjects who qualified for further analyses was n = 741 for eNKI, 593
for CamCAN and 418 for IXI (total n = 1752).

The data-templates created by CAT and ANTs were sharper and
more similar to general templates than those created by FSLVBM
(templates are demonstrated in the Supplementary Material in Figures
S.1, S.2, S.3).

3.2. VBM pipelines produce different results

3.2.1. Brain age prediction
We first performed individual-level prediction of chronological age

using regional GMVs as features using four machine-learning algo-
rithms (Fig. 1). Within-dataset CV performance considerably varied
among pipelines (Fig. 1 (𝑎)). The average performance across the learn-
ing algorithms and datasets was highest for the fMRIPrep-FSL general
template (𝑀𝐴𝐸 = 5.83), followed by the FSLVBM general template
(𝑀𝐴𝐸 = 6.17) and fMRIPrep-FSL data-template (𝑀𝐴𝐸 = 6.18).
CAT with the data-template and with the general template showed
similar performance of 𝑀𝐴𝐸 = 6.37 and 6.39, respectively. The best
average performance across datasets was achieved by the fMRIPrep-
FSL general template with KRR (𝑀𝐴𝐸 = 5.59). ANTs performed the
worst on average. All four learning algorithms generally showed similar
performance for each pipeline (Supplementary Material Table S.2).

For cross-dataset predictions (Fig. 1 (𝑏)), the best performance aver-
aged across datasets and models was again achieved by the fMRIPrep-
FSL pipelines, with the data-template (𝑀𝐴𝐸 = 6.21) performing
slightly better than the general template (𝑀𝐴𝐸 = 6.26) closely followed
by CAT general template (𝑀𝐴𝐸 = 6.45). Here, the best overall predic-
tions were again provided by the KRR algorithm. For the fMRIPrep-FSL
data-template and general-template 𝑀𝐴𝐸 was 6.06 and 6.13, respec-
tively. For CAT, 𝑀𝐴𝐸 = 6.32 and 6.42 with the general template
and data-template, respectively. ANTs-FSL-derived GMVs performed
the worst on average (Supplementary Material Table S.3).

3.2.2. Machine-learning analysis confirms distinct GMV patterns
The machine-learning approach classified the pipelines with a near-

perfect accuracy close to 100%. To rule out the possibility that this high
accuracy was driven by systematic differences, that is, some pipelines
over- or underestimating the GMV overall (which is indeed the case, see
Supplementary Material Figure S.7), we performed an additional anal-
ysis where each subject’s feature vector was 𝑧-scored independently, in
effect removing the overall differences in GMV estimates. This analysis
also resulted in high classification accuracy for all the datasets, close
to 100%. Detailed results are provided in the Supplementary Material
(Figure S.4).

3.2.3. Identification shows individual-level differences
Pipelines differing only in the template showed high differential

identifiability 43>Idiff>29. fMRIPrep-FSL and FSLVBM, both with data-
template, had the highest Idiff = 45, followed by the two ANTs pipelines
Idiff = 43). The two CAT pipelines had the lowest mean Idiff values,
ith the data-template pipeline being the lowest. FSLVBM with data-

emplate had the highest mean Idiff. Pipelines using FSL for registration
nd modulation, with a general template, had a mean Idiff = 33.7.

The same pipelines with a data-template showed mean Idiff = 37.7.
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ANTs-FSL and fMRIPrep-FSL, when both using a general template had
Idiff = 35 and when using a data-template Idiff = 34. Finally, ANTs and
ANTs-FSL, which differ in registration (and modulation), had Idiff = 29
when both used general templates and Idiff = 30 for data-templates
(Fig. 2).

3.2.4. Univariate analysis and region-wise similarity
To better understand whether some VBM steps drive differences

in the GMV estimates more than others, as well as to identify the
regions showing significant differences, we performed several univari-
ate statistical analyses. Some of the pipelines differ only in a single
step; therefore, by examining the similarity between them, insightful
conclusions can be extracted about the effect of this specific VBM
step. We observed that the overall agreement between the pipelines,
based on the median of the pairwise correlation values, varied across
the regions, while most of the regions showed only low-to-moderate
agreement (Fig. 3). Only the regions close to the cingulum, temporal
lobes and fusiform area showed relatively high agreement across the
pipelines (median 𝑟 > 0.6). Most of the subcortical regions showed low
agreement (median 𝑟 < 0.4), except the caudate (median 𝑟 > 0.6). In the
erebellum, all regions showed a median 𝑟 < 0.6. Overall, these results
ndicate a low agreement across the pipelines.

The regionwise similarity between pairs of pipelines differed sub-
tantially. While ignoring pipeline pairs that differ only in the template
which are expected to be similar), maximum similarity was observed
etween fMRIPrep and FSLVBM both using a data-specific template
average 𝑟 = 0.76), while the minimum similarity was between ANTs-
SL using the general template and CAT with both templates (average
= 0.306) (Fig. 4).

.2.5. Comparison between ANTs and CAT
High similarities were observed between the CAT and ANTs

ipelines, despite differences in the steps, the order of the steps and
he algorithms for each step. The highest similarity was observed when
sing the general templates (which themselves are different, as shown
n Table 1) with 𝑟 = 0.72 followed by 𝑟 = 0.66 between the ANTs data-

template and the CAT general template. A slightly lower similarity, of
𝑟 = 0.65 was estimated when both pipelines used the data-templates as
well as between the ANTs general template and the CAT data-template.

3.2.6. Effect of registration, segmentation, and brain extraction
In the subsequent analyses, we compared pipelines differing in

specific VBM steps to assess their specific impact.
Regionwise similarity between ANTs and ANTs-FSL that differed

only in registration (and therefore in modulation) using the general
template was moderate to low, average 𝑟 = 0.51. When using data-
specific templates, the similarity was higher for all data (0.58) but also
for each of the three datasets (Fig. 5(𝑎)).

ANTs-FSL and fMRIPrep-FSL share the same steps besides segmen-
tation. When using the general template, the average region-wise sim-
ilarity was 0,67, and for the data-specific templates, the corresponding
value was 0.68 (Fig. 5(𝑏)).

FSLVBM and fMRIPrep-FSL differ in the brain extraction step.
hen both pipelines utilized the default FSL template, they had a simi-

arity of 0.67. When the registration was performed using their respec-
ive data-specific template, the similarity increased to 0.76 (Fig. 5(𝑐)).

Overall, similarities were higher when data-templates were used.
For ANTs compared to ANTs-FSL, the highest similarity values

ere in subcortical areas, and the lowest similarity values were in the
entrolateral and dorsolateral prefrontal cortices, especially when using
general template (Fig. 5𝑏(𝑖)). ANTs-FSL and fMRIPrep-FSL showed the

east similarities in subcortical areas, the occipital lobe and prefrontal
ortex (Fig. 5𝑏(𝑖𝑖)). Finally, FSLVBM and fMRIPrep-FSL had the lowest
imilarity values in the subcortical areas, and the highest values were
n the temporal lobes, medial prefrontal cortex and cingulate gyrus
Fig. 5𝑏(𝑖𝑖𝑖)).
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Fig. 1. Age prediction for each pipeline. Blue, orange, green and red bars represent the averaged results of the three datasets per machine-learning algorithm, and the purple bars
show the mean across models and datasets. (a) Models trained and tested in the same dataset. Four models were tested using the three datasets in a nested K-fold cross-validation
scheme. (b) Age prediction for each pipeline when trained with two of the datasets and tested in the left-out one. Blue stars show the prediction performances on eNKI data, light
blue circles the performances on CamCAN data, and black crosses on IXI data. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
For each of the three datasets, similar figures separately with his-
tograms of regional correlation values and Nifti files with all regional
correlation values for the other pairs of pipelines can be found in the
Supplementary Material.

3.2.7. Pipelines with the same registration
ANTs-FSL and FSLVBM, which share only the registration step, had

a similarity of 0.59 for all data when using either the FSL default or
the data-specific template. The similarity for the eNKI dataset was 0.65
for both templates; for the CamCAN dataset, the similarity was 0.60 for
the general template and 0.63 for the data-template and 0.56 and 0.58
for IXI dataset, respectively.

3.2.8. General template versus data-specific template
The pipelines differing in the template, i.e., either general or a

data-template, showed varying degrees of similarity (Table 2). The
highest similarity was for CAT (𝑟 > 0.9), followed by ANTs (> 0.86)
in all three datasets. The similarity was low to moderate for the three
pipelines using FSL for registration and template creation steps (ANTs-
FSL, FSLVBM, and fMRIPrep-FSL). Specifically, ANTs-FSL had a mean
similarity across the three datasets of 𝑟 = 0.71, fMRIPrep-FSL 0.66 and
FSLVBM 0.59.

Univariate analysis is in line with the identification Idiff results.
Pearson’s r between the Idiff values and the regionwise correlations
of pairs of pipelines was high, 𝑟 = 0.841, 𝑝 < 0.05 (more details in
Supplementary Material Figure S.12).
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Table 2
The average values of regionwise correlation calculated across subjects for each pipeline
when using a general template and a data-template. The 𝑚𝑒𝑎𝑛 across datasets is also
presented, as well as the values from the same analysis performed with data from all
datasets. It is noteworthy that when all data were combined, there was not an overall
template created, but subjects were registered to the corresponding dataset template.

General template compared to the data-specific template

ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI 0.879 0.718 0.646 0.573 0.908
CamCAN 0.876 0.694 0.678 0.596 0.910
IXI 0.864 0.713 0.668 0.605 0.916
Mean 0.873 0.708 0.664 0.591 0.911
All data 0.859 0.699 0.662 0.585 0.894

3.3. Association with age

3.3.1. Correlation between age and regional GMV
We performed univariate analysis to assess how regional GMVs

capture aging-related information. CAT showed the highest average
correlation magnitude between regional GMVs and age irrespective
of the template used for all datasets, followed by fMRIPrep-FSL with
the general template. For CAT, the mean correlation across datasets
was 𝑟 = −0.410 and −0.406 with a general template and data-specific
template, respectively (Table 3). The distribution of regional GMV-age
correlation values was more narrowly distributed for CAT and ANTs,
while they were more broadly distributed for pipelines using FSL (Fig. 6



NeuroImage 279 (2023) 120292

7

G. Antonopoulos et al.

Fig. 2. Identification performance in terms of differential identifiability. We used Pearson’s coefficient to calculate similarity between subjects. The highest mean Idiff was found
for FSLVBM data-template followed by ANTs general template. The two CAT pipelines showed the lowest mean Idiff values.

Fig. 3. Median values of regional correlations calculated across subjects of all pairwise combinations of pipelines. The frontal lobe, subcortical regions and cerebellum showed
lower similarity. First, correlations between regional GMVs across subjects were calculated for each pipeline pair. The median of these 45 values was then calculated as an overall
agreement among the pipelines for each region.
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Fig. 4. Histograms of regional interpipeline similarity for all pairs of pipelines. For each pair, we calculated Pearson’s r coefficient for each region across all subjects. We used
the Holm-Bonferroni method to correct for multiple comparisons. The histograms shown consist of those regions that survived the multiple comparison (𝑝 < 0.05).
Table 3
Pearson’s r-values were calculated between age and all regional GMVs across subjects.
r-values were transformed to Fischer’s z averaged and transformed back to r-values. CAT
with the general template and with the data-template appears to preserve age-related
information better than the other pipelines, followed by fMRIPrep-FSL and ANTs. There
is high consistency between datasets, with CamCAN showing a higher relation to age
for those pipelines that use FSL for registration and CAT.
General templates

ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI −0.258 −0.182 −0.324 −0.155 −0.388
CamCAN −0.264 −0.197 −0.411 −0.224 −0.425
IXI −0.274 −0.163 −0.337 −0.151 −0.416
Mean −0.265 −0.181 −0.357 −0.177 −0.410
All data −0.253 −0.188 −0.357 −0.168 −0.381

Data-specific template

ANTS ANTs-FSL fMRIPrep-FSL FSLVBM CAT 12

eNKI −0.262 −0.188 −0.291 −0.145 −0.385
CamCAN −0.260 −0.193 −0.365 −0.202 −0.421
IXI −0.270 −0.157 −0.298 −0.140 −0.413
Mean −0.264 −0.179 −0.318 −0.162 −0.406
All data −0.253 −0.174 −0.319 −0.155 −0.370

(𝑎)). Overall, the regional GMV-age correlation was markedly different
between the pipelines (Fig. 6).

One-way ANOVA revealed a statistically significant difference in the
average r-coefficients of regional GMV and age between at least two
pipelines for all datasets (Supplementary Material Table S.5).

3.3.2. Comparison of regional age information between pipelines
The regional GMV-age correlation values not only differed but also

showed opposing effects (Fig. 7). In other words, some regions showed
a positive correlation with age in one pipeline but a negative corre-
lation in another pipeline (see Supplementary Material Figures S.16,
S.17 and S.18). In particular, this was the case for FSLVBM and ANTs-
FSL, which contained many regions with a positive correlation with
age. Strikingly, the same two pipelines also exhibited a large number
of regions with opposing correlations with age when using a different
template.

When using all data, CAT had 𝑛_𝑟𝑜𝑖𝑠 = 6 ROIs with a positive corre-
lation to age when using either template. fMRIPrep-FSL had 𝑛_𝑟𝑜𝑖𝑠 =27
8

with the general template and 22 with the data-template, and ANTs had
𝑛_𝑟𝑜𝑖𝑠 = 56 for both templates. ANTs-FSL and FSLVBM had 𝑛_𝑟𝑜𝑖𝑠 = 218
and 280 regions positively correlated to age when using a general tem-
plate and 184 and 226 regions when using a data-template, respectively.
Two regions in the thalamus showed a positive correlation with age for
all pipelines. In general, the regions with a positive correlation with age
for all pipelines were mostly subcortical (see Fig. 7).

3.3.3. Effect of parcel size
We examined whether parcel size was associated with the agree-

ment among the pipelines and with the agreement between ROIs and
age. We observed no or marginal association between the overall
similarity among the pipelines (calculated as the median of agreement
between pipeline pairs) and parcel sizes (Pearson’s correlation, all data:
𝑟 = −0.08, 𝑝 = 0.006, eNKI: 𝑟 = −0.02, 𝑝 = 0.51, CamCAN: 𝑟 = −0.11, 𝑝 =
0.0002, IXI: 𝑟 = 0.07, 𝑝 = 0.022) (Supplementary Material Figure S.19).

Correlation values between parcel size and the corresponding re-
gional correlation values to age for each pipeline varied between
pipelines as well as between datasets. The highest correlation was for
CAT, with 𝑟 = −0.145 when using the general template and 𝑟 = −0.134
with the data-template (both 𝑝 < 0.05). ANTs showed the next closest
relation between parcel size and regional association with age, with
𝑟 = −0.105 when using a general template and 𝑟 = −0.101 when using a
data-template (both 𝑝 < 0.05). Those marginal negative correlations in-
dicate that the fewer voxels are in an ROI, the better the relation of this
ROI to age. All other correlation values were rather small, indicating
that overall, the parcel sizes did not impact our results (Supplementary
Material, for all data combined Figure S.23, eNKI Figure S.20, CamCAN
Figure S.21 and IXI Figure S.22).

4. Discussion

‘‘Which tool shall I use to perform my VBM analysis?’’, this is one
of the very first questions that a researcher asks before starting a VBM
study. The choice is often based on the literature or familiarity or
recommendations. The current lack of an in depth comparison between
VBM pipelines, the impact of the main steps on the outcome, and
their utility precludes informative choice. Sparked by that, we com-
pared 10 VBM pipelines derived from widely used tools on three large
datasets covering the adult lifespan, acquired in different scanners and
protocols. Two of the pipelines consisted of VBM steps from different
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Fig. 5. (a) Histograms of regionwise correlation values between selected pairs of pipelines for all datasets. The 𝑟 value represents the average correlation of all regions (that
survived the Holm-Bonferroni correction) after transforming them to Fisher’s 𝑧 and then reverse transformed to 𝑟. The pipeline pairs are categorized according to the template they
use in the registration step. (𝑖) Correlation between ANTs and ANTs-FSL, which differ only in the registration step. (𝑖𝑖) ANTs compared to fMRIPrep-FSL. These two pipelines differ
only in the segmentation step, as fMRIPrep utilizes FSL-based segmentation. Segmentation imposes fewer differences than registration, (𝑖𝑖𝑖) FSLVBM and fMRIPrep-FSL only differ
in the brain extraction step. This step has a similar effect to segmentation when a general template is used and higher similarity when a data-template is used. The data-specific
template comparisons are also provided here for convenience reasons, although it should be noted that the template creation steps may differ for the pipeline pairs, resulting in
the usage of different data-specific templates. (b) Brain maps with regional similarity of selected pairs of pipelines calculated using all data. Similarity values are expressed in
Pearson’s r and were corrected using the Holm-Bonferroni method. Light blue represents regions without a significant association (p> 0.05) and blue represents regions with a
negative correlation (𝑟 < 0). (𝑖) High similarity in subcortical areas and increased differences in cortical areas, especially when using a general template. (𝑖𝑖) Different segmentations
seem to have affected the cerebellum, subcortical areas and the posterior and anterior areas of the same axial level for both templates. (𝑖𝑖𝑖) Brain extraction when using a general
template caused more differences in the subcortical areas, superior frontal and the upper part of the cerebellum. It is noteworthy that negative values appear in the superior frontal
lobe. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
tools. Our experiments were designed to facilitate a user-centric and
systematic evaluation, which allows us to derive robust conclusions.
Moreover, it permitted the examination of the effect of template use,
i.e., general and data-template, as well as the effect of individual VBM
steps.

Overall, we made the following observations based on analysis of
the GMV estimates from different perspectives. The differences in indi-
viduals’ brain-age predictions confirmed that different VBM pipelines
produce different GMVs (Fig. 1, Tables S.2 & S.3). The systematic
differences between the pipelines were further confirmed by the high
accuracy when predicting the pipelines using their GMVs (Figure S.4).
A detailed univariate analysis of across-subject correlation (Fig. 4)
and identification using the subject-specific multivariate GMV pattern
(Fig. 2) showed that the individual steps of the VBM process as well as
the choice of the template lead to the differences in the GMV estimates
(see also Fig. 5 and Table 2). Differences in GMV in turn impact the way
age is reflected as we saw in univariate analysis correlating regional
GMV with age (Fig. 6 and Table 3).

First, we sought to establish whether the pipelines indeed lead to
different results in applications. To this end, we performed predictive
analysis using regional GMV as features and four machine-learning
models commonly used in brain-age prediction. Individual-level age
prediction showed variability in prediction accuracy (Fig. 1), similar
9

to what has been previously reported for voxel-level analysis and using
CAT and FSL-based pipelines (Zhou et al., 2022). Our age-prediction
accuracy for CAT and fMRIPrep-FSL are comparable to previous re-
ports, considering our dataset size and the wide age range (Eickhoff
et al., 2021; Cole et al., 2017a). To establish whether the differences in
the pipelines are systematic, we performed classification analysis. The
near-perfect classification performance in the prediction of pipelines
(Figure S.4) provides evidence for systematically distinct outcomes
of the pipelines, which could be learned by the machine-learning
algorithm and is in line with previous research (Callaert et al., 2014;
Popescu et al., 2016; Rajagopalan and Pioro, 2015). Importantly, re-
moving overall GMV differences by standardizing each feature vector
also provided similarly high accuracy. Based on these results, even
though the pipelines differ in seemingly trivial ways, such as using
different templates or segmentation algorithm, we can conclude that
they produce diverging GMV patterns.

Taken together, these results suggest that combining data processed
with different pipelines might not be fruitful. Data harmonization
methods (Pomponio et al., 2020; Radua et al., 2020), although designed
for tackling cross-site differences, can also be explored to eliminate
cross-pipeline differences. To this end, we performed two preliminary
analyses. First, we harmonized data across all the 10 pipelines and per-
formed pipeline prediction analysis similar to 2.5. The pipelines could
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Fig. 6. Correlation between regional GMV and age across subjects for the eNKI dataset. CAT had the fewest regions with a positive correlation with age (n=6 for the general
template and 7 for the data-template). A few more regions with positive correlations had ANTs (n = 27, n = 31) and fMRIPrep-FSL (n = 29 and 31). ANTs-FSL and FSLVBM have
significantly higher numbers of regions with positive correlations as well as regions with nonsignificant correlations (p > 0.05). Regions with positive or nonsignificant correlations
appear transparent in the brain images. For ANTs, the cerebellar regions and regions of cingulate gyri and limbic lobes. ANTs-FSL and FSLVBM demonstrated the most regions
with a positive correlation with age. The cerebellum in FSLVBM shows a very small association with age, while in ANTs-FSL, cerebellar regions have more medium to high r
values. Finally, fMRIPrep-FSL and CAT have small r values in the superior parietal and occipital lobes and medium to high r values in the frontal parts of the brain.

Fig. 7. Pearson’s r values between regional GMV and age calculated across subjects for selected pipelines plotted against the same measurements for other pipelines. The upper
left and lower right quadrants of each subplot contain those regions that have correlations to age with opposite signs/directions between the two pipelines. ANTs-FSL and FSLVBM
have the most ROIs with positive correlations to age. Here, we selected a few pipelines that cover the spectrum of the main tools we used and better illustrate how the same
regions in different pipelines can have opposite relations to age. All pipeline combinations can be seen in Figure S.15 in the Supplementary Material.
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not be predicted with high accuracy after harmonization, however we
also observed a bias towards specific pipelines (Supplementary Material
Figure S.5). Second, we harmonized the three datasets processed with
three different pipelines and performed leave-one-site-out age predic-
tion analysis similar to Section 2.4. This resulted in a higher MAE
(MAE = 8.5 using a GPR model, Supplementary Material Table S.4)
compared to when using a single preprocessing pipeline (MAE = 6.29-
8.36 using a GPR model, Table S.3). In addition, we would like to note
that harmonization can perform better when the biological variance
of interest is explicitly preserved, such as age as the target in age
prediction analysis. However, this means that the target value must be
also available for the test data. This setup leads to data leakage when
performing CV and cannot be applied on real test data, considering
also that data from the test site or pipeline is needed for learning
a harmonization model (in our analysis we harmonized all the data
together). Thus, in its current form this approach is not suitable for ML
applications. These results suggest that applying data harmonization
methods in this context is challenging and needs further investigation.

The low to moderate identification performance and its variability
across pipelines suggest that individual-level characteristics are, to
a certain degree, captured differently by different pipelines (Fig. 2).
This result has important implications for data sharing and privacy
issues (White et al., 2022). As we show, with regionwise GMV data it
is difficult to identify subjects when processed with different pipelines.
Thus, when sharing such data, for instance, to perform multicenter
analysis, it is important to keep the VBM pipeline consistent, including
the template used.

Univariate analysis showed limited ROI-level similarity across
pipelines, with an average regional similarity of 𝑟 = 0.51 for pipelines
using a general template. FSLVBM (using BET) and fMRIPrep-FSL
(using ANTs brain extraction) showed high similarity, especially when
a data-template was used (average 𝑟 = 0.76) (Fig. 5 (𝑐)). When using
the general template, the average similarity decreased but remained
relatively high (𝑟 = 0.67). This suggests that differences in brain
extraction are overshadowed by the subsequent steps. ANTs-FSL and
fMRIPrep-FSL pipelines that differ mainly in segmentation (and the a
priori template in brain extraction) showed relatively high agreement
(𝑟 = 0.67 general template; 𝑟 = 0.68 data-template), although slightly
lower than what we show for brain extraction (Fig. 5 (𝑏)).

Differences between registration algorithms have been reported (Ou
et al., 2014). Our results are in line with this previous report. The
registration step, evaluated as a comparison between ANTs and ANTs-
FSL, had medium-to-high impact, with average agreement between
these pipelines ranging across datasets, from 𝑟 = 0.48 to 𝑟 = 0.53 and
= 0.57 to 𝑟 = 0.6 for general and data-template, respectively (Fig. 5
𝑎)).

The impact of using different registration templates, general tem-
late versus data-template, was examined using pipelines that differ
nly in the template. This resulted in a wide-ranging agreement from
= 0.59 to 𝑟 = 0.92 (Table 2). ANTs and CAT create data-templates

hat are very similar to their respective general templates — likely due
o their exhaustive registration algorithms and the iterative processes
ogether with the fact that their template creation processes are initial-
zed with a general template. Overall, the differences in data-template
reation algorithms and the ensuing data-templates led to substantial
ifferences across the tools. This is in agreement with previous research
eporting a small impact of the template when using CAT (Haynes
t al., 2020). Effectively, using a data-template imposes higher simi-
arity between the subjects’ images, which we also observed for some
ipelines (Fig. 4). Despite this high similarity, machine-learning-based
nalysis could reliably distinguish the pipelines. Univariate analysis
f regionwise GMV-age correlations as well as age prediction were
n favor of using a general template. Using subjects’ data to create a
ata-template and then registering the same subjects to it is a circular
rocess unless an independent subset is used for template creation;
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owever, given the limited data, this is often hard to implement in
practice. The latter, in combination with the high computational de-
mands of the template-creation process, are in favor of using a general
template.

Although ANTs and CAT share no common modules, they showed
medium to high similarity (for all data sets ranged from 𝑟 = 0.65
to 𝑟 = 0.72; maximum was for 𝑟 = 0.74 for the eNKI). According
to the impact of individual steps in the final GMV, as shown in our
pipeline comparison, CAT and ANTs are expected to yield differing
GMV estimates unless there are similarities in their internal algorithmic
mechanism, which seems to be the case. In fact, exhaustive registration
to similar templates can lead to similar outcomes. ANTs-FSL with
the general template and CAT (both templates) showed the lowest
regionwise similarity across datasets. However, in our opinion, the low
similarity between CAT, with either template, and FSLVBM using a
general template needs special attention (Fig. 4 and Supplementary
Material, eNKI Figure S.8, CamCAN Figure S.9 and IXI Figure S.10).
The reason is that they are both off-the-shelf pipelines and widely
used in VBM projects. Regionally, the highest differences were present
in the frontal lobe, superior parietal lobule and subcortical regions,
specifically with regards to their association to age (Supplementary
Material Figures S.15, S.16, S.17, S.18) Such differences enhance the
risk of emanating different or even sometimes contradictory conclu-
sions. From the projection of similarities between pipelines in the brain
(Supplementary Material nifti files), it appears that high correlation
values are not located in specific regions, nor is a specific pattern
formed. However, segmentation and brain extraction seem to affect
stronger subcortical and cerebellar areas and the superior frontal and
occipital lobes. When comparing the registrations of ANTs and FNIRT,
widespread differences appear in cortical areas and in the cerebellum
(Fig. 5(𝑏)).

The identification results (Fig. 2) were very similar to the pairwise
similarity estimated using Pearson’s correlation (Fig. 4). The agreement
between the two methods was high (Pearson’s correlation between pair-
wise similarity and Idiff, 𝑟 = 0.84), and when using general templates,
identification and univariate analysis were almost the same (𝑟 = 0.955,
Supplementary Material Figure S.12). This agreement between two
different methods to assess similarity between the pipelines provides
confirmatory validity to our findings.

It is important to note that, mostly for brain extraction but also
for segmentation and registration algorithms, there are important dif-
ferences between the datasets (Fig. 5). This indicates that properties
such as the intensity range of the images can influence the results in
different ways, e.g., the quality of segmentation varies across different
scanning parameters (Rao et al., 2022; Kruggel et al., 2010; Valverde
et al., 2015).

By using three large datasets, we aimed to cover a wide range of
MRI vendors as well as scanning parameters and settings. Different
scanners were used not only across datasets but also within the same
dataset, strengthening our results and conclusions independent of the
datasets’ idiosyncrasies.

The fMRIPrep-FSL combination showed the second highest correla-
tion with age and the best brain-age predictions. This is not surprising
given the nonexhaustive registration of FSL, which together with deep
neural networks provides accurate brain-age prediction (Peng et al.,
2021). It is noteworthy that we used all subjects from the eNKI sam-
ple without separating the healthy part of the cohort as is usually
done. When inspecting the age predictions of only healthy subjects,
in intrasite predictions, and a mix of healthy and nonhealthy subjects,
cross-site, separately, we did not observe a significant difference (see
Supplementary Material Table S.2 and Table S.3). This can be ex-
plained by the fact that the nonlinear transformations wipe-out small
differences compared to linear registration but also by the fact that
the templates we used are based on healthy populations. In the age-
prediction CAT showed performance similar to fMRIPrep-FSL but lower
than what has been previously reported (Jonsson et al., 2019). How-

ever, this difference can be driven by the machine-learning algorithms
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and the feature space employed. These results are in line with the
univariate analysis we performed, where the same two pipelines had
the highest (anti-) correlation with age (Fig. 6). In addition, fewer
ROIs showed a positive correlation with age for CAT and fMRIPrep-
FSL than for other pipelines, which is in line with known GM atrophy
with age (Farokhian et al., 2017b; Gennatas et al., 2017; Koops et al.,
2020). Taken together, our results are in favor of CAT and fMRIPrep-
FSL in regard to aging-related studies. Although some recent brain-age
applications have shown that linear registration is preferable (Franke
et al., 2010; Peng et al., 2021), we decided to compare the whole VBM
process using nonlinear registration. This choice was made so that we
could approach the topic via a common space, permit the use of a
parcellation atlas and facilitate the interpretability of the results.

The user-centric approach we followed in this project does not allow
for an extensive evaluation of the potentials of the tools we used. CAT,
ANTs, but to a certain degree also FSLVBM potentially can be tuned to
provide more accurate brain-age predictions or regional associations to
age. However, such an investigation is out of the scope of this work.

To summarize, our results show that all steps of a VBM pipeline have
a considerable impact on the GMV estimates, and therefore, different
pipelines produce different results. These differences in GMV estimates
are reflected in univariate as well as multivariate analyses. The choice
of registration has the highest impact, followed by segmentation and
brain extraction algorithm. In the specific case of age-prediction, we
recommend the combination of ANTs for brain extraction and FSL
for segmentation (as implemented in fMRIPrep) and FSL nonlinear
registration or CAT 12.8, with the latter having the advantage of being
available as an off-the-shelf pipeline. The option of using a general
template is preferred for age-related studies and likely other studies
with a similar set up, especially when analyzing scans from multiple
datasets.
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