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Abstract9

Voxel-based morphometry (VBM) analysis is commonly used for localized quantification10

of gray matter volume (GMV). Several alternatives exist to implement a VBM pipeline.11

However, how these alternatives compare and their utility in applications, such as the es-12

timation of aging effects, remain largely unclear. This leaves researchers wondering which13

VBM pipeline they should use for their project. In this study, we took a user-centric perspec-14

tive and systematically compared five VBM pipelines, together with registration to either a15

general or a study-specific template, utilizing three large datasets (n>500 each). Consider-16

ing the known effect of aging on GMV, we first compared the pipelines in their ability of17

individual-level age prediction and found markedly varied results. To examine whether these18

results arise from systematic differences between the pipelines, we classified them based on19

their GMVs, resulting in near-perfect accuracy. To gain deeper insights, we examined the20

impact of different VBM steps using the region-wise similarity between pipelines. The re-21

sults revealed marked differences, largely driven by segmentation and registration steps. We22

observed large variability in subject-identification accuracies, highlighting the interpipeline23

differences in individual-level quantification of GMV. As a biologically meaningful criterion24

we correlated regional GMV with age. The results were in line with the age-prediction anal-25

ysis, and two pipelines, CAT and the combination of fMRIPrep for tissue characterization26

with FSL for registration, reflected age information better.27

1



1 Introduction28

Analysis of brain structure has provided important insights regarding its organization in29

health and disease. T1-weighted (T1w) images obtained using magnetic resonance imaging30

(MRI) are commonly used for this purpose. However, raw T1w images cannot be compared31

directly due to their semiquantitative nature and inter- and intrasubject variability [1]. Vol-32

umetric analysis of T1w images using voxel-based morphometry (VBM) [2, 3] allows the33

investigation of the volumetric composition of brain tissues across subjects. It estimates34

tissue volume in each voxel and brings individual brains in a common reference space per-35

mitting comparison. VBM analysis has provided a plethora of valuable insights, for instance,36

in neurodegenerative diseases [4–8] and psychiatric disorders [9].37

VBM has been successfully applied to study aging [10–12]. Recently, prediction of individ-38

uals’ age based on VBM-derived information has proven to be a validated proxy for brain39

integrity and overall health [13–15], and promising for individualized clinical applications40

[14, 16–19]. Brain-age prediction is an important and widely studied topic that aims to41

estimate the trajectory of healthy brain aging [20, 21].42

To estimate the GVM from T1w images, some specific steps must be performed. The main43

steps of a VBM pipeline are as follows: i) Segmentation creates probability maps where44

each voxel is assigned a probability of belonging to specific brain tissues, usually gray matter45

(GM), white matter (WM), and cerebrospinal fluid (CSF). Brain extraction, which is the46

process of removing the skull from an image and leaving only actual brain tissues and CSF,47

is also a segmentation process but in some cases is performed prior to segmentation of GM,48

WM and CSF.49

ii) Spatial registration/normalization to a reference brain space is performed so that50

anatomical regions are aligned. The reference space can be either a general template (e.g.,51

MNI-152) or a study-/data-specific template (henceforth referred to as data-template) [22–52

24]. Data-templates are mainly used when comparing healthy subjects to patients to avoid53

bias due to general templates constructed from healthy populations. Several ways exist to54

create a data-template, and they are often created to match a standard space, such as the55

MNI space. Most VBM pipelines come with a general template.56

iii) Modulation of the normalized tissue estimates aims at preserving the original amounts57

of tissue after spatial registration. To do so, normalized images are adjusted by the amount58

of local volume changes.59

Since the introduction of VBM in 1995 [2], several alternatives and a multitude of options60

for each of the steps have been proposed. Even though various VBM pipelines utilize the61

same steps, the order of the steps may vary, and each step might use a different algorithm62

with several configurable options. Moreover, the pipelines can use those steps in a different63

order or perform some of them simultaneously and/or iteratively. It is also possible to create64

hybrid pipelines by combining the steps from different tools. Furthermore, optional steps,65

for example, whether to create a data template or use a general template provided by a66
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tool, add to the already vast number of choices. Consequently, even if a user chooses an67

off-the-shelf VBM pipeline is not completely absolved of further choices. How the outputs68

of VBM pipelines compare and their utility in different applications remain poorly studied,69

which can lead to suboptimal choices [25–27].70

Previous work comparing VBM pipelines indeed provides evidence for differences. A com-71

prehensive comparison between Computational Anatomy Toolbox (CAT) [28] version 12.7,72

two FSL-based and a hybrid (still FSL [29] dependent) pipelines has shown that the choice of73

preprocessing pipeline has an impact both in age prediction and sex classification [30]. The74

same study showed that regions driving the results are pipeline dependent, while the choice75

of the templates used for registration, general or data-template, has little or no impact. FSL76

and SPM [31] yield different outcomes, especially for cortical regions [32]. A comparison77

focusing on registration and segmentation steps of SPM and FSL concluded that these pre-78

processing steps drive the regions identified in multiple amyotrophic lateral sclerosis [26].79

Segmentation and registration as implemented in SPM8 newseg, SPM8 DARTEL [33], and80

FSLVBM were found to have substantial influence on GMV estimates and their relationship81

to age [34]. This study additionally concluded that pipelines with limited degrees of freedom82

for local deformations might overestimate between-group differences. Finally, the selection83

of tissue probability maps (TPMs) as priors for segmentation systematically impacts the84

segmentation outcome and, in turn, affects the statistical estimates [35]. The CAT12 VBM85

pipeline was found to perform better in the detection of volumetric alterations in temporal86

lobe epilepsy compared to the VBM8 toolbox [36, 37].87

Several studies have investigated the effects of individual VBM steps and their parametriza-88

tion. A comparison of 14 deformation algorithms used for registration found that SyN [38]89

from the Advance Normalization Toolkit (ANTs) [39] and DARTEL (CAT) were among those90

with the best performance, with SyN exhibiting the highest consistency across subjects [40]91

as well as being among the most robust to noise, partial volume effects and magnetic field92

inhomogeneities [41]. Segmentation algorithms from SPM, ANTs and FSL showed relatively93

small differences in controls, but significant differences appeared when comparing brains with94

atrophies, suggesting that the segmentation algorithm should be selected according to the95

brain characteristics of the study-population [42]. Dadar and colleagues compared six seg-96

mentation tools and confirmed significant differences between the tools as well as within-tool97

differences based on interscanner analysis [43]. For brain extraction, although FSL-BET has98

been reported to have low performance [42], it does not influence subsequent segmentation99

[44]. A comparison of SPM12, SPM8 and FreeSurfer5.3 [45] showed that SPM12 estimates of100

total intracranial volume (TIV) align better with manual segmentation [46]. SPM-based es-101

timates in autism spectrum disorder and typically developing controls were closest to manual102

segmentation in terms of TIV, followed by FreeSurfer, while FSL appeared to underestimate103

TIV [47].104

Taken together, different VBM pipelines produce different outcomes. The disagreement in105

VBM pipelines hinders precise localization and valid interpretation of tissue volume in the106

downstream analysis, e.g., atrophy in patients with multiple sclerosis [48–50]. To date, there107
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is no standard method to calculate GMV or guidelines on which implementation of VBM is108

appropriate for a study at hand, e.g., age prediction. Additionally, the interaction of different109

algorithms and parameters in each step of VBM for estimating GMV and their effect on age110

estimates across the adult life-span, has not been thoroughly investigated. Moreover, the111

utility of a data-template created from healthy subjects and how it compares with a general112

template, especially in cross-site studies, remains unanswered. Here, to fill this gap, utilizing113

three large datasets (each n>500), we compared and evaluated five VBM pipelines including114

two off-the-shelf workflows and three modularly constructed pipelines utilizing commonly115

used neuroimaging tools. Each pipeline was implemented in two versions, one using a general116

template and one using a data-template, resulting in a total of 10 VBM pipelines. To117

remain consistent with our user-centric approach and developer guidelines, we adopted the118

default parameters unless there were specific recommendations from the developers [51].119

First, we investigated whether different VBM pipelines produce GMV estimates that lead120

to different results in machine-learning-based predictions of individuals’ chronological age.121

We also calculated regional correlation to age, as GMV is known to decrease with age in122

healthy subjects. This extrinsic evaluation provides a more objective and utilitarian proxy123

for comparison [19, 20, 52, 53] and a criterion based on biological factors. Additionally, we124

showed that the pipelines indeed produce distinct patterns of GMV using machine-learning-125

based classification. Specifically, we address the following questions:126

� How do the pipelines differ at the region- and the subject-level?127

� What impact do brain extraction, segmentation and registration have on GMV?128

� What is the effect of using a data-template compared to a general template?129

� How do the pipeline outcomes compare in univariate and multivariate analyses?130

� Which pipeline better reflects brain aging and performs best in brain-age prediction?131

With this comprehensive and systematic comparative analysis of VBM pipelines, we aim to132

provide essential information and recommendations to researchers to help them select the133

VBM pipeline that best matches their research goals.134
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2 Materials and Methods135

2.1 Datasets136

We analyzed T1w images of healthy individuals from three large datasets covering the adult137

lifespan,138

eNKI [54]: population based sample of n=953 subjects, of which 573 had no psychiatric or139

neurological disorders or medication at the time of the scan (48.1±17.2 years, 630 female).140

CamCAN [55, 56]: n=634 aging individuals without serious psychiatric conditions or cogni-141

tive impairment (54.8±=18.4 years, 320 female). IXI [57]: multisite sample of n=582 normal142

and healthy subjects (49.4±16.7 years, 324 female). (Table S.1 in Supplementary Material)143

2.2 Pipelines144

CAT [28], a popularly used off-the-shelf VBM tool, is a successor of the first VBM pipeline145

implemented in SPM [3]. Here, we used the latest version CAT12.8 (r1813). Several general-146

purpose neuroimaging tools also provide functionality that can be used to create VBM147

pipelines. FSLVBM [58] uses tools from FSL [29] and is also widely used. ANTs [39]148

provides broad image processing and image analysis functionality, including all functions149

needed to perform VBM. Hybrid VBM pipelines that combine the functionality of different150

tools can be constructed, e.g., using fMRIPrep [59], which performs brain extraction using151

ANTs and then performs the rest of the steps using FSL.152

We devised five VBM pipelines following the recommended steps and settings in the literature153

[39]: ANTs, ANTs-FSL, fMRIPrep-FSL, FSLVBM, and CAT. These pipelines were selected154

to reflect the choices that are common practice and easy to use. We used each pipeline155

with a standard template (the default templates for CAT and FSLVBM) irrespective of the156

dataset (general template) and with a dataset-specific template that was created and used157

for registration (data-template). Together, this resulted in ten pipelines.158

2.2.1 ANTs159

We used ANTs version 2.2.0. First, each scan was corrected using the N4 bias field correction160

[60] and then segmented to select intracranial tissues using Atropos-based brain extraction161

[61]. Next, Atropos segmentation initialized with K-means was applied to segment the images162

into GM, WM and CSF. The GM-map images were registered to a template (general or data-163

specific) using a sequence of transformations. First, rigid body and affine transformations164

were applied, followed by a nonlinear BsplineSyN transform with the parameters set as in [62].165

The Jacobian matrix from the spatial transformation was used to modulate the segmented166

GM. Data-specific templates were created using the ANTs build template method with167

default values. To create the template images, the transformations were averaged and used168

iteratively [39, 63]. To keep the template shape stable over multiple iterations of template169

building, the inverse average warp was calculated and applied to the template image.170

To facilitate the analysis, the data-template process was initialized using a general MNI171

template. Therefore, the final data-template was also in the MNI space. For all processes172
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requiring tissue masks and templates as well as for the registration to MNI, we used the ICBM173

152 Non-linear Asymmetrical template version 2009a and corresponding tissue probability174

maps [64, 65].175

2.2.2 FSLVBM176

We used FSL version 6.0. The images were prepared by automatically reorienting and then177

cropping part of the neck and lower head. Then, BET was used to extract the intracranial178

part of the brain, which was then segmented into GM, WM and CSF using FAST. Data-179

specific templates were created following FSLVBM’s process utilizing all GM images from a180

given dataset. GM segmented images were affinely registered to the ICBM-152 GM template,181

concatenated and averaged. This averaged image was then flipped along the x-axis, and the182

two mirror images were then reaveraged to obtain a first-pass, study-specific affine GM183

template. Second, GM images were reregistered to this affine GM template using nonlinear184

registration, averaged and flipped along the x-axis. Both mirror images were then averaged185

to create the final symmetric, study-specific, non − linear GM template. The resulting186

data-template was in the MNI space. The GM images were then nonlinearly registered to187

the template (either general or data-specific) and modulated. As the general template, we188

used the FSL-provided template (see Table 1).189

2.2.3 fMRIPrep-FSL190

The reportedly poor quality of BET in brain extraction might lead to spurious results [42];191

thus, we decided to test a pipeline that uses a better brain extraction as provided by ANTs192

followed by FSL for the rest of VBM processing. As fMRIPrep has been well validated and193

is gaining popularity, we chose to use the output of the fMRIPrep’s structural processing.194

In this hybrid pipeline for image preparation and segmentation, we used fMRIPrep version195

stable 20.0.6 [59], which uses ANTs version 2.1.0. Each T1w volume was corrected for196

intensity nonuniformity (INU) using N4BiasFieldCorrection [60] and skull-stripped using197

‘antsBrainExtraction.sh‘ (using the OASIS template). Brain tissue segmentation into CSF,198

WM and GM was then performed using FSL FAST [66] (as used by the fMRIPrep FSL199

v5.0.9). This FAST parametrization diverges from the one in FSLVBM in the following200

parameters: (i) the Markov random field (MRF) beta value for the main segmentation201

phase was set to H=0.2, while the default value in FSLVBM was 0.1, and (ii) the MRF beta202

value for mixeltype was R=0.2, while the default in FSLVBM was 0.3. Template creation,203

spatial normalization, and modulation were identical to the FSLVBM pipeline.204

2.2.4 ANTs-FSL205

The exact same processing, as mentioned above in the ANTs pipeline, was used to prepare206

the images, correct bias field noise, perform brain extraction and finally perform tissue207

segmentation using ANTs’ Atropos. The creation of a data-specific template, registration208

and modulation were implemented as in the FSLVBM pipeline. Note that the difference209

between this pipeline and the fMRIPrep-FSL pipeline is the tissue segmentation tool used.210
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2.2.5 CAT211

CAT12.8 was used based on SPM12 (v7771) using MATLAB (R2017b) and compiled for212

containerization in Singularity (2.6.1). CAT provides a complete VBM pipeline including213

denoising with spatial-adaptive nonlocal means, bias-correction, skull-stripping, and lin-214

ear and nonlinear spatial registration. Images are segmented by an adaptive maximum215

a-posteriori approach [67] with partial volume model [68]. For nonlinear transformation, the216

geodesic shooting algorithm [69] is used. As the default template, an IXI-based template217

transformed to MNI152NLin2009cAsym is provided. For the data-template, initially, all218

structural T1 images are segmented into GM, WM, and CSF and spatially coregistered to219

the MNI standard template using affine registration. The affine tissue segments were used220

to create the new sample-specific geodesic shooting template that consists of four iterative221

nonlinear normalization steps.222

Table 1 summarizes the VBM steps of each pipeline we utilized in our analyses.223

Pipeline Skull stripping Segmentation
Template
(general/data-specific)

Registration/
Modulation

ANTs ANTs Brain Extraction Atropos
ICBM MNI152Nlin2009a

ANTsRegistration
AntsBuildtemplate

ANTs-FSL ANTs Brain Extraction Atropos
ICBM MNI152Nlin6th generation

FNIRT
fslvbm 2 template

fMRIPrep-FSL ANTs Brain Extraction FAST
ICBM MNI152Nlin6th generation

FNIRT
fslvbm 2 template

FSLVBM BET FAST
ICBM MNI152Nlin6th generation

FNIRT
fslvbm 2 template

CAT CAT CAT
ICBM MNI152Nlin2009c based

CAT
CAT

Table 1: Software/algorithm used for the main VBM steps in our analysis pipelines.

2.3 Parcellation scheme and quality control224

To decrease the dimensionality of the data and thereby facilitate informative comparison225

and the use of machine-learning approaches, we extracted region-level averages. However,226

to preserve good spatial resolution, we selected a high granularity parcellation scheme. A227

combination of three atlases covering the whole brain and together constituting 1073 regions228

of interest (ROIs) was used: 1000 cortical regions from the Schaefer atlas [70], 36 subcortical229

regions from the Brainnetome Atlas [71] and 37 cerebellar regions [72]. Regional GMV values230

were calculated as the average of nonzero voxels within each region.231

ANTs segmentation (Atropos), which was initiated with k-means, in some cases returned232

tissues in a different order, resulting in selecting the WM instead of the GM for further233

analysis. Therefore, we employed the following quality check to ensure that selected tissue234

represented GM. First, we discarded individuals who had a ratio of the mean of GM voxels235

over the mean of WM and CSF voxels of less than 1.5. Furthermore, images that were236

close to the 1.5 threshold as well as randomly sampled images were visually inspected for237

quality of segmentation. Because developing a thorough quality check or tackling this issue238
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inside Atropos is out of the scope of this work, the threshold for the ratio of mean GM over239

WM and CSF was experimentally identified. Although CAT has an internal quality control240

method, for consistency, we applied our test to all pipelines. We retained only subjects who241

passed the quality checks across all the pipelines.242

2.4 Age prediction243

We performed machine-learning-based analysis to predict the age of each subject using re-244

gional GMVs from each pipeline as features. We chose this as a suitable test given that age245

is reliably associated with GMV [19, 20, 52, 53] and because of the increasing importance of246

brain-age as a proxy for overall brain health [52, 73–75]. All features were standardized by247

removing the mean and scaling to unit variance in a cross-validation (CV)-consistent man-248

ner [76]. We utilized four machine-learning algorithms: relevance vector regression (RVR)249

[77], Gaussian process regression (GPR) [78], least absolute shrinkage and selection operator250

(LASSO) [79, 80], and kernel ridge regression (KRR) [81], in a nested 5-fold CV scheme re-251

peated 5 times [82]. The age prediction performance was evaluated using the mean absolute252

error (MAE). To ensure that differences were not driven by factors other than the pipelines,253

we used the same data (subjects and regions) and models for each pipeline.254

The evaluation was performed in two set ups, intradataset, and interdataset. In the inter-255

dataset evaluation, the models were trained using two datasets and then used to predict the256

third hold-out dataset. This analysis was performed for each pipeline separately.257

2.5 Classification of pipelines258

To confirm the existence of systematic differences in the outcomes of the pipelines, we per-259

formed machine-learning-based predictive analysis based on the multivariate patterns of260

regional GMV. The idea behind this analysis is that if a model can classify the pipeline261

producing a GMV image with a high accuracy, that would indicate that the model learned262

systematic differences between the VBM pipelines. We performed 10-class classification263

with subjects’ regional GMVs as features and the pipelines as class labels. The features264

were standardized by removing the mean and scaling to unit variance in a CV-consistent265

manner [76] in two ways: i) within each feature and ii) within each subject. The former is266

standard preprocessing, while we implemented the latter to guard against trivial biases such267

as magnitude shifts. We used a linear support vector machine (SVM) with the default cost268

parameter of C=1 in a 5-fold CV scheme repeated 5 times.269

2.6 Individual-level identification270

We examined the within-subject consistency of GMV patterns when processed by different271

pipelines. To do so, we identified subjects across pipelines using a nearest neighbor search.272

Using each pipeline as a reference (query), we tried to match each subject with all the273

subjects of each other pipeline (database). As an identification metric, we used Pearson’s274

correlation between two subjects’ regional GMVs [83, 84]. Each subject was matched with275

the subject from another pipeline with the highest correlation coefficient. The identification276

performance between two pipelines was calculated using the differential identifiability (Idiff)277
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metric [84].278

2.7 Region-level comparison279

To obtain a better understanding of regions driving the differences between pipelines, we280

assessed the similarity in regional GMV estimates from different pipelines using univariate281

statistical analysis. These analyses were performed for subjects from all datasets combined282

as well as separately for each dataset. We estimated similarity in regional GMVs across283

subjects using Pearson’s correlation coefficient for all possible pipeline pairs (in total 45).284

To investigate whether the size of parcels affects the regional similarities, we calculated for285

each ROI the median of correlation coefficients across the pairs of pipelines and correlated286

it with the number of voxels per region (see Figure S.6 in the Supplementary Material).287

For all arithmetic operations on Pearson’s r values, first Fisher’s z transform was applied,288

and then the result was transformed back to Pearson’s r value.289

2.8 Extrinsic evaluation of similarity between pipelines290

The pipeline comparisons described above are intrinsic in nature. Thus, although they pro-291

vide important information regarding differences between the pipelines, they do not provide292

information regarding the correctness of the pipelines in estimating the GMV. Such a cor-293

rectness assessment, although desirable, cannot currently be achieved due to a lack of ground294

truth data. Instead, we compared the pipelines based on their utility in capturing age-related295

information.296

We first tested to what degree regional GMV estimates from each pipeline reflect subjects’297

age using univariate statistical analysis. To do so, we computed Pearson’s r between the298

regional GMVs and subjects’ ages for each pipeline separately. The resulting p values were299

corrected to control for the familywise error rate [85] due to multiple comparisons, again for300

all data combined as well as separately for each pipeline. We then performed an analysis of301

variance (ANOVA) to test whether the means of the correlation coefficients were significantly302

different.303

Machine-learning-based analyses were performed using scikit-learn [86].304
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3 Results305

3.1 Preprocessing and data-templates306

For CAT and fMRIPrep, less than 0.4% of all subjects failed the preprocessing. For CAT, all307

outcomes passed our quality check. For FSLVBM, less than 2% of the subjects failed the QC.308

For fMRIPrep-FSL, there were slightly fewer subjects who failed QC than for FSLVBM. A309

considerable number of subjects failed ANTs segmentation (13% for eNKI, 5% for CamCAN310

and 12% for IXI). The QC results for the hybrid ANTs-FSL pipeline were similar to those of311

ANTs. The final number of subjects who qualified for further analyses was n=741 for eNKI,312

593 for CamCAN and 418 for IXI (total n=1752).313

The data-templates created by CAT and ANTs were sharper and more similar to general314

templates than those created by FSLVBM (templates are demonstrated in the Supplementary315

Material in Figures S.1, S.2, S.3).316

3.2 VBM pipelines produce different results317

3.2.1 Brain age prediction318

We first performed individual-level prediction of chronological age using regional GMVs319

as features using four machine-learning algorithms (Figure 1). Within-dataset CV perfor-320

mance considerably varied among pipelines (Figure 1 (a)). The average performance across321

the learning algorithms and datasets was highest for the fMRIPrep-FSL general template322

(MAE = 5.83), followed by the FSLVBM general template (MAE = 6.17) and fMRIPrep-323

FSL data-template (MAE = 6.18). CAT with the data-template and with the general324

template showed similar performance of MAE = 6.37 and 6.39, respectively. The best aver-325

age performance across datasets was achieved by the fMRIPrep-FSL general template with326

KRR (MAE = 5.59). ANTs performed the worst on average. All four learning algorithms327

generally showed similar performance for each pipeline (Supplementary Material Table S.2).328

For cross-dataset predictions (Figure 1 (b)), the best performance averaged across datasets329

and models was again achieved by the fMRIPrep-FSL pipelines, with the data-template330

(MAE = 6.21) performing slightly better than the general template (MAE = 6.26) closely331

followed by CAT general template (MAE = 6.45). Here, the best overall predictions were332

again provided by the KRR algorithm. For the fMRIPrep-FSL data-template and general-333

template MAE was 6.06 and 6.13, respectively. For CAT, MAE = 6.32 and 6.42 with the334

general template and data-template, respectively. ANTs-FSL-derived GMVs performed the335

worst on average (Supplementary Material Table S.3).336
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Figure 1: Age prediction for each pipeline. Blue, orange, green and red bars represent the
averaged results of the three datasets per machine-learning algorithm, and the purple bars
show the mean across models and datasets. a) Models trained and tested in the same dataset.
Four models were tested using the three datasets in a nested K-fold cross-validation scheme.
b) Age prediction for each pipeline when trained with two of the datasets and tested in the
left-out one. Blue stars show the prediction performances on eNKI data, light blue circles
the performances on CamCAN data, and black crosses on IXI data.

3.2.2 Machine-learning analysis confirms distinct GMV patterns337

The machine-learning approach classified the pipelines with a near-perfect accuracy close338

to 100%. To rule out the possibility that this high accuracy was driven by systematic339

differences, that is, some pipelines over- or underestimating the GMV overall (which is340

indeed the case, see Supplementary Material Figure S.7), we performed an additional analysis341

where each subject’s feature vector was z-scored independently, in effect removing the overall342

differences in GMV estimates. This analysis also resulted in high classification accuracy for343
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all the datasets, close to 100%. Detailed results are provided in the Supplementary Material344

(Figure S.4).345

3.2.3 Identification shows individual-level differences346

Pipelines differing only in the template showed high differential identifiability 43>Idiff>29.347

fMRIPrep-FSL and FSLVBM, both with data-template, had the highest Idiff= 45, followed348

by the two ANTs pipelines (Idiff= 43). The two CAT pipelines had the lowest mean Idiff349

values, with the data-template pipeline being the lowest. FSLVBM with data-template350

had the highest mean Idiff. Pipelines using FSL for registration and modulation, with a351

general template, had a mean Idiff= 33.7. The same pipelines with a data-template showed352

mean Idiff= 37.7. ANTs-FSL and fMRIPrep-FSL, when both using a general template had353

Idiff= 35 and when using a data-template Idiff= 34. Finally, ANTs and ANTs-FSL, which354

differ in registration (and modulation), had Idiff= 29 when both used general templates and355

Idiff= 30 for data-templates (Figure 2).356
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Figure 2: Identification performance in terms of differential identifiability. We used Pearson’s
coefficient to calculate similarity between subjects. The highest mean Idiff was found for
FSLVBM data-template followed by ANTs general template. The two CAT pipelines showed
the lowest mean Idiff values.

3.2.4 Univariate analysis and region-wise similarity357

To better understand whether some VBM steps drive differences in the GMV estimates more358

than others, as well as to identify the regions showing significant differences, we performed359

several univariate statistical analyses. Some of the pipelines differ only in a single step;360

therefore, by examining the similarity between them, insightful conclusions can be extracted361

about the effect of this specific VBM step. We observed that the overall agreement between362

the pipelines, based on the median of the pairwise correlation values, varied across the363

regions, while most of the regions showed only low-to-moderate agreement (Figure 3). Only364

the regions close to the cingulum, temporal lobes and fusiform area showed relatively high365

agreement across the pipelines (median r > 0.6). Most of the subcortical regions showed low366
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agreement (median r < 0.4), except the caudate (median r > 0.6). In the cerebellum, all367

regions showed a median r < 0.6. Overall, these results indicate a low agreement across the368

pipelines.369

Figure 3: Median values of regional correlations calculated across subjects of all pairwise
combinations of pipelines. The frontal lobe, subcortical regions and cerebellum showed lower
similarity. First, correlations between regional GMVs across subjects were calculated for each
pipeline pair. The median of these 45 values was then calculated as an overall agreement
among the pipelines for each region.

The regionwise similarity between pairs of pipelines differed substantially. While ignoring370

pipeline pairs that differ only in the template (which are expected to be similar), maximum371

similarity was observed between fMRIPrep and FSLVBM both using a data-specific template372

(average r = 0.76), while the minimum similarity was between ANTs-FSL using the general373

template and CAT with both templates (average r = 0.306) (Figure 4).374
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Figure 4: Histograms of regional interpipeline similarity for all pairs of pipelines. For each pair, we calculated Pearson’s r
coefficient for each region across all subjects. We used the Holm-Bonferroni method to correct for multiple comparisons.
The histograms shown consist of those regions that survived the multiple comparison (p < 0.05).
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3.2.5 Comparison between ANTs and CAT375

High similarities were observed between the CAT and ANTs pipelines, despite differences376

in the steps, the order of the steps and the algorithms for each step. The highest similarity377

was observed when using the general templates (which themselves are different, as shown378

in Table 1) with r = 0.72 followed by r = 0.66 between the ANTs data-template and the379

CAT general template. A slightly lower similarity, of r = 0.65 was estimated when both380

pipelines used the data-templates as well as between the ANTs general template and the381

CAT data-template.382

3.2.6 Effect of Registration, Segmentation, and Brain extraction383

In the subsequent analyses, we compared pipelines differing in specific VBM steps to assess384

their specific impact.385

Regionwise similarity between ANTs and ANTs-FSL that differed only in registration (and386

therefore in modulation) using the general template was moderate to low, average r = 0.51.387

When using data-specific templates, the similarity was higher for all data (0.58) but also for388

each of the three datasets (Figure 5 (a)).389

ANTs-FSL and fMRIPrep-FSL share the same steps besides segmentation. When using390

the general template, the average region-wise similarity was 0, 67, and for the data-specific391

templates, the corresponding value was 0.68 (Figure 5 (b)).392

FSLVBM and fMRIPrep-FSL differ in the brain extraction step. When both pipelines393

utilized the default FSL template, they had a similarity of 0.67. When the registration394

was performed using their respective data-specific template, the similarity increased to 0.76395

(Figure 5 (c)).396

Overall, similarities were higher when data-templates were used.397
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Figure 5: a) Histograms of regionwise correlation values between selected pairs of pipelines
for all datasets. The r value represents the average correlation of all regions (that survived
the Holm-Bonferroni correction) after transforming them to Fisher’s z and then reverse
transformed to r. The pipeline pairs are categorized according to the template they use
in the registration step. i) Correlation between ANTs and ANTs-FSL, which differ only
in the registration step. ii) ANTs compared to fMRIPrep-FSL. These two pipelines differ
only in the segmentation step, as fMRIPrep utilizes FSL-based segmentation. Segmentation
imposes fewer differences than registration, iii) FSLVBM and fMRIPrep-FSL only differ in
the brain extraction step. This step has a similar effect to segmentation when a general
template is used and higher similarity when a data-template is used. The data-specific
template comparisons are also provided here for convenience reasons, although it should be
noted that the template creation steps may differ for the pipeline pairs, resulting in the usage
of different data-specific templates. b) Brain maps with regional similarity of selected pairs
of pipelines calculated using all data. Similarity values are expressed in Pearson’s r and
were corrected using the Holm-Bonferroni method. Light blue represents regions without
a significant association (p> 0.05) and blue represents regions with a negative correlation
(r < 0). i) High similarity in subcortical areas and increased differences in cortical areas,
especially when using a general template. ii) Different segmentations seem to have affected
the cerebellum, subcortical areas and the posterior and anterior areas of the same axial
level for both templates. iii) Brain extraction when using a general template caused more
differences in the subcortical areas, superior frontal and the upper part of the cerebellum.
It is noteworthy that negative values appear in the superior frontal lobe.

17



For ANTs compared to ANTs-FSL, the highest similarity values were in subcortical areas,398

and the lowest similarity values were in the ventrolateral and dorsolateral prefrontal cortices,399

especially when using a general template (Figure 5 b(i)). ANTs-FSL and fMRIPrep-FSL400

showed the least similarities in subcortical areas, the occipital lobe and prefrontal cortex401

(Figure 5 b(ii)). Finally, FSLVBM and fMRIPrep-FSL had the lowest similarity values in402

the subcortical areas, and the highest values were in the temporal lobes, medial prefrontal403

cortex and cingulate gyrus (Figure 5 b(iii)).404

For each of the three datasets, similar figures separately with histograms of regional correla-405

tion values and Nifti files with all regional correlation values for the other pairs of pipelines406

can be found in the Supplementary Material.407

3.2.7 Pipelines with the same registration408

ANTs-FSL and FSLVBM, which share only the registration step, had a similarity of 0.59409

for all data when using either the FSL default or the data-specific template. The similarity410

for the eNKI dataset was 0.65 for both templates; for the CamCAN dataset, the similarity411

was 0.60 for the general template and 0.63 for the data-template and 0.56 and 0.58 for IXI412

dataset, respectively.413

3.2.8 General template versus data-specific template414

The pipelines differing in the template, i.e., either general or a data-template, showed varying415

degrees of similarity (Table 2). The highest similarity was for CAT (r > 0.9), followed by416

ANTs (> 0.86) in all three datasets. The similarity was low to moderate for the three417

pipelines using FSL for registration and template creation steps (ANTs-FSL, FSLVBM, and418

fMRIPrep-FSL). Specifically, ANTs-FSL had a mean similarity across the three datasets of419

r = 0.71, fMRIPrep-FSL 0.66 and FSLVBM 0.59.420

General template compared to the data-specific template
ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI 0.879 0.718 0.646 0.573 0.908
CamCAN 0.876 0.694 0.678 0.596 0.910

IXI 0.864 0.713 0.668 0.605 0.916
Mean 0.873 0.708 0.664 0.591 0.911

All data 0.859 0.699 0.662 0.585 0.894

Table 2: The average values of regionwise correlation calculated across subjects for each
pipeline when using a general template and a data-template. The mean across datasets
is also presented, as well as the values from the same analysis performed with data from
all datasets. It is noteworthy that when all data were combined, there was not an overall
template created, but subjects were registered to the corresponding dataset template.

Univariate analysis is in line with the identification Idiff results. Pearson’s r between the421

Idiff values and the regionwise correlations of pairs of pipelines was high, r = 0.841, p < 0.05422

(more details in Supplementary Material Figure S.12).423
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3.3 Association with age424

3.3.1 Correlation between age and regional GMV425

We performed univariate analysis to assess how regional GMVs capture aging-related infor-426

mation. CAT showed the highest average correlation magnitude between regional GMVs and427

age irrespective of the template used for all datasets, followed by fMRIPrep-FSL with the428

general template. For CAT, the mean correlation across datasets was r = −0.410 and −0.406429

with a general template and data-specific template, respectively (Table 3). The distribution430

of regional GMV-age correlation values was more narrowly distributed for CAT and ANTs,431

while they were more broadly distributed for pipelines using FSL (Figure 6 (a)). Overall,432

the regional GMV-age correlation was markedly different between the pipelines (Figure 6).433
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Figure 6: Correlation between regional GMV and age across subjects for the eNKI dataset.
CAT had the fewest regions with a positive correlation with age (n=6 for the general tem-
plate and 7 for the data-template). A few more regions with positive correlations had
ANTs (n=27, n=31) and fMRIPrep-FSL (n=29 and 31). ANTs-FSL and FSLVBM have
significantly higher numbers of regions with positive correlations as well as regions with non-
significant correlations (p>0.05). Regions with positive or nonsignificant correlations appear
transparent in the brain images. For ANTs, the cerebellar regions and regions of cingulate
gyri and limbic lobes. ANTs-FSL and FSLVBM demonstrated the most regions with a pos-
itive correlation with age. The cerebellum in FSLVBM shows a very small association with
age, while in ANTs-FSL, cerebellar regions have more medium to high r values. Finally,
fMRIPrep-FSL and CAT have small r values in the superior parietal and occipital lobes and
medium to high r values in the frontal parts of the brain.

One-way ANOVA revealed a statistically significant difference in the average r-coefficients434

of regional GMV and age between at least two pipelines for all datasets (Supplementary435
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General templates
ANTs ANTs-FSL fMRIPrep-FSL FSLVBM CAT

eNKI -0.258 -0.182 -0.324 -0.155 -0.388
CamCAN -0.264 -0.197 -0.411 -0.224 -0.425
IXI -0.274 -0.163 -0.337 -0.151 -0.416
Mean -0.265 -0.181 -0.357 -0.177 -0.410
All data -0.253 -0.188 -0.357 -0.168 -0.381

Data-specific template
ANTS ANTs-FSL fMRIPrep-FSL FSLVBM CAT 12

eNKI -0.262 -0.188 -0.291 -0.145 -0.385
CamCAN -0.260 -0.193 -0.365 -0.202 -0.421
IXI -0.270 -0.157 -0.298 -0.140 -0.413
Mean -0.264 -0.179 -0.318 -0.162 -0.406
All data -0.253 -0.174 -0.319 -0.155 -0.370

Table 3: Pearson’s r-values were calculated between age and all regional GMVs across sub-
jects. r-values were transformed to Fischer’s z averaged and transformed back to r-values.
CAT with the general template and with the data-template appears to preserve age-related
information better than the other pipelines, followed by fMRIPrep-FSL and ANTs. There
is high consistency between datasets, with CamCAN showing a higher relation to age for
those pipelines that use FSL for registration and CAT.

Material Table S.5).436

3.3.2 Comparison of regional age information between pipelines437

The regional GMV-age correlation values not only differed but also showed opposing effects438

(Figure 7). In other words, some regions showed a positive correlation with age in one pipeline439

but a negative correlation in another pipeline (see Supplementary Material Figures S.16, S.17440

and S.18). In particular, this was the case for FSLVBM and ANTs-FSL, which contained441

many regions with a positive correlation with age. Strikingly, the same two pipelines also442

exhibited a large number of regions with opposing correlations with age when using a different443

template.444

When using all data, CAT had n rois = 6 ROIs with a positive correlation to age when using445

either template. fMRIPrep-FSL had n rois =27 with the general template and 22 with the446

data-template, and ANTs had n rois = 56 for both templates. ANTs-FSL and FSLVBM had447

n rois = 218 and 280 regions positively correlated to age when using a general template and448

184 and 226 regions when using a data-template, respectively. Two regions in the thalamus449

showed a positive correlation with age for all pipelines. In general, the regions with a positive450

correlation with age for all pipelines were mostly subcortical.451
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Figure 7: Pearson’s r values between regional GMV and age calculated across subjects for
selected pipelines plotted against the same measurements for other pipelines. The upper
left and lower right quadrants of each subplot contain those regions that have correlations
to age with opposite signs/directions between the two pipelines. ANTs-FSL and FSLVBM
have the most ROIs with positive correlations to age. Here, we selected a few pipelines that
cover the spectrum of the main tools we used and better illustrate how the same regions in
different pipelines can have opposite relations to age. All pipeline combinations can be seen
in Figure S.15 in the Supplementary Material.

3.3.3 Effect of Parcel size452

We examined whether parcel size was associated with the agreement among the pipelines and453

with the agreement between ROIs and age. We observed no or marginal association between454

the overall similarity among the pipelines (calculated as the median of agreement between455

pipeline pairs) and parcel sizes (Pearson’s correlation, all data: r = −0.08, p = 0.006,456

eNKI: r = −0.02, p = 0.51, CamCAN: r = −0.11, p = 0.0002, IXI: r = 0.07, p = 0.022)457

(Supplementary Material Figure S.19).458

Correlation values between parcel size and the corresponding regional correlation values to459

age for each pipeline varied between pipelines as well as between datasets. The highest460

correlation was for CAT, with r = −0.145 when using the general template and r = −0.134461

with the data-template (both p < 0.05). ANTs showed the next closest relation between462

parcel size and regional association with age, with r = −0.105 when using a general template463

and r = −0.101 when using a data-template (both p < 0.05). Those marginal negative464

correlations indicate that the fewer voxels are in an ROI, the better the relation of this ROI465

to age. All other correlation values were rather small, indicating that overall, the parcel466

sizes did not impact our results (Supplementary Material, for all data combined Figure S.23,467

eNKI Figure S.20, CamCAN Figure S.21 and IXI Figure S.22).468

22



4 Discussion469

“Which tool shall I use to perform my VBM analysis?”, this is one of the very first questions470

that a researcher asks before starting a VBM study. The choice is often based on the471

literature or familiarity or recommendations. The current lack of an in depth comparison472

between VBM pipelines, the impact of the main steps on the outcome, and their utility473

precludes informative choice. Sparked by that, we compared 10 VBM pipelines derived from474

widely used tools on three large datasets covering the adult lifespan, acquired in different475

scanners and protocols. Two of the pipelines consisted of VBM steps from different tools.476

Our experiments were designed to facilitate a user-centric and systematic evaluation, which477

allows us to derive robust conclusions. Moreover, it permitted the examination of the effect478

of template use, i.e., general and data-template, as well as the effect of individual VBM479

steps.480

Overall, we made the following observations based on analysis of the GMV estimates from481

different perspectives. The differences in individuals’ brain-age predictions confirmed that482

different VBM pipelines produce different GMVs (Figure 1, Tables S.2 & S.3). The sys-483

tematic differences between the pipelines were further confirmed by the high accuracy when484

predicting the pipelines using their GMVs (Figure S.4). A detailed univariate analysis of485

across-subject correlation (Figures 4) and identification using the subject-specific multivari-486

ate GMV pattern (Figures 2) showed that the individual steps of the VBM process as well487

as the choice of the template lead to the differences in the GMV estimates (see also Figure488

5 and Table 2). Differences in GMV in turn impact the way age is reflected as we saw in489

univariate analysis correlating regional GMV with age (Figure 6 and Table 3).490

First, we sought to establish whether the pipelines indeed lead to different results in appli-491

cations. To this end, we performed predictive analysis using regional GMV as features and492

four machine-learning models commonly used in brain-age prediction. Individual-level age493

prediction showed variability in prediction accuracy (Figure 1), similar to what has been494

previously reported for voxel-level analysis and using CAT and FSL-based pipelines [30].495

Our age-prediction accuracy for CAT and fMRIPrep-FSL are comparable to previous re-496

ports, considering our dataset size and the wide age range [87, 88]. To establish whether497

the differences in the pipelines are systematic, we performed classification analysis. The498

near-perfect classification performance in the prediction of pipelines (Figure S.4) provides499

evidence for systematically distinct outcomes of the pipelines, which could be learned by the500

machine-learning algorithm and is in line with previous research [26, 32, 34]. Importantly,501

removing overall GMV differences by standardizing each feature vector also provided sim-502

ilarly high accuracy. Based on these results, even though the pipelines differ in seemingly503

trivial ways, such as using different templates or segmentation algorithm, we can conclude504

that they produce diverging GMV patterns.505

Taken together, these results suggest that combining data processed with different pipelines506

might not be fruitful. Data harmonization methods [89, 90], although designed for tackling507

cross-site differences, can also be explored to eliminate cross-pipeline differences. To this508
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end, we performed two preliminary analyses. First, we harmonized data across all the 10509

pipelines and performed pipeline prediction analysis similar to 2.5. The pipelines could510

not be predicted with high accuracy after harmonization, however we also observed a bias511

towards specific pipelines (Supplementary Material Figure S.5). Second, we harmonized512

the three datasets processed with three different pipelines and performed leave-one-site-out513

age prediction analysis similar to section 2.4. This resulted in a higher MAE (MAE=8.5514

using a GPR model, Supplementary Material Table S.4) compared to when using a single515

preprocessing pipeline (MAE=6.29-8.36 using a GPR model, Table S.3). In addition, we516

would like to note that harmonization can perform better when the biological variance of517

interest is explicitly preserved, such as age as the target in age prediction analysis. However,518

this means that the target value must be also available for the test data. This setup leads519

to data leakage when performing CV and cannot be applied on real test data, considering520

also that data from the test site or pipeline is needed for learning a harmonization model (in521

our analysis we harmonized all the data together). Thus, in its current form this approach522

is not suitable for ML applications. These results suggest that applying data harmonization523

methods in this context is challenging and needs further investigation.524

The low to moderate identification performance and its variability across pipelines suggest525

that individual-level characteristics are, to a certain degree, captured differently by different526

pipelines (Figure 2). This result has important implications for data sharing and privacy527

issues [91]. As we show, with regionwise GMV data it is difficult to identify subjects when528

processed with different pipelines. Thus, when sharing such data, for instance, to perform529

multicenter analysis, it is important to keep the VBM pipeline consistent, including the530

template used.531

Univariate analysis showed limited ROI-level similarity across pipelines, with an average532

regional similarity of r = 0.51 for pipelines using a general template. FSLVBM (using BET)533

and fMRIPrep-FSL (using ANTs brain extraction) showed high similarity, especially when a534

data-template was used (average r = 0.76) (Figure 5 (c)). When using the general template,535

the average similarity decreased but remained relatively high (r = 0.67). This suggests that536

differences in brain extraction are overshadowed by the subsequent steps. ANTs-FSL and537

fMRIPrep-FSL pipelines that differ mainly in segmentation (and the a priori template in538

brain extraction) showed relatively high agreement (r = 0.67 general template; r = 0.68539

data-template), although slightly lower than what we show for brain extraction (Figure 5540

(b)).541

Differences between registration algorithms have been reported [41]. Our results are in542

line with this previous report. The registration step, evaluated as a comparison between543

ANTs and ANTs-FSL, had medium-to-high impact, with average agreement between these544

pipelines ranging across datasets, from r = 0.48 to r = 0.53 and r = 0.57 to r = 0.6 for545

general and data-template, respectively (Figure 5 (a)).546

The impact of using different registration templates, general template versus data-template,547

was examined using pipelines that differ only in the template. This resulted in a wide-ranging548
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agreement from r = 0.59 to r = 0.92 (Table 2). ANTs and CAT create data-templates549

that are very similar to their respective general templates – likely due to their exhaustive550

registration algorithms and the iterative processes together with the fact that their template551

creation processes are initialized with a general template. Overall, the differences in data-552

template creation algorithms and the ensuing data-templates led to substantial differences553

across the tools. This is in agreement with previous research reporting a small impact of the554

template when using CAT [35]. Effectively, using a data-template imposes higher similarity555

between the subjects’ images, which we also observed for some pipelines (Figure 4). Despite556

this high similarity, machine-learning-based analysis could reliably distinguish the pipelines.557

Univariate analysis of regionwise GMV-age correlations as well as age prediction were in558

favor of using a general template. Using subjects’ data to create a data-template and then559

registering the same subjects to it is a circular process unless an independent subset is used560

for template creation; however, given the limited data, this is often hard to implement in561

practice. The latter, in combination with the high computational demands of the template-562

creation process, are in favor of using a general template.563

Although ANTs and CAT share no common modules, they showed medium to high simi-564

larity (for all data sets ranged from r = 0.65 to r = 0.72; maximum was for r = 0.74 for565

the eNKI). According to the impact of individual steps in the final GMV, as shown in our566

pipeline comparison, CAT and ANTs are expected to yield differing GMV estimates unless567

there are similarities in their internal algorithmic mechanism, which seems to be the case.568

In fact, exhaustive registration to similar templates can lead to similar outcomes. ANTs-569

FSL with the general template and CAT (both templates) showed the lowest regionwise570

similarity across datasets. However, in our opinion, the low similarity between CAT, with571

either template, and FSLVBM using a general template needs special attention (Figure 4572

and Supplementary Material, eNKI Figure S.8, CamCAN Figure S.9 and IXI Figure S.10).573

The reason is that they are both off-the-shelf pipelines and widely used in VBM projects.574

Regionally, the highest differences were present in the frontal lobe, superior parietal lobule575

and subcortical regions, specifically with regards to their association to age (Supplemen-576

tary Material Figures S.15, S.16, S.17, S.18) Such differences enhance the risk of emanating577

different or even sometimes contradictory conclusions. From the projection of similarities578

between pipelines in the brain (Supplementary Material nifti files), it appears that high cor-579

relation values are not located in specific regions, nor is a specific pattern formed. However,580

segmentation and brain extraction seem to affect stronger subcortical and cerebellar areas581

and the superior frontal and occipital lobes. When comparing the registrations of ANTs and582

FNIRT, widespread differences appear in cortical areas and in the cerebellum (Figure 5 (b)).583

The identification results (Figure 2) were very similar to the pairwise similarity estimated584

using Pearson’s correlation (Figure 4). The agreement between the two methods was high585

(Pearson’s correlation between pairwise similarity and Idiff, r = 0.84), and when using586

general templates, identification and univariate analysis were almost the same (r = 0.955,587

Supplementary Material Figure S.12). This agreement between two different methods to588

assess similarity between the pipelines provides confirmatory validity to our findings.589
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It is important to note that, mostly for brain extraction but also for segmentation and590

registration algorithms, there are important differences between the datasets (Figure 5).591

This indicates that properties such as the intensity range of the images can influence the592

results in different ways, e.g., the quality of segmentation varies across different scanning593

parameters [92–94].594

By using three large datasets, we aimed to cover a wide range of MRI vendors as well as595

scanning parameters and settings. Different scanners were used not only across datasets but596

also within the same dataset, strengthening our results and conclusions independent of the597

datasets’ idiosyncrasies.598

The fMRIPrep-FSL combination showed the second highest correlation with age and the best599

brain-age predictions. This is not surprising given the nonexhaustive registration of FSL,600

which together with deep neural networks provides accurate brain-age prediction [25]. It is601

noteworthy that we used all subjects from the eNKI sample without separating the healthy602

part of the cohort as is usually done. When inspecting the age predictions of only healthy603

subjects, in intrasite predictions, and a mix of healthy and nonhealthy subjects, cross-site,604

separately, we did not observe a significant difference (see Supplementary Material Table605

S.2 and Table S.3). This can be explained by the fact that the nonlinear transformations606

wipe-out small differences compared to linear registration but also by the fact that the607

templates we used are based on healthy populations. In the age-prediction CAT showed608

performance similar to fMRIPrep-FSL but lower than what has been previously reported [17].609

However, this difference can be driven by the machine-learning algorithms and the feature610

space employed. These results are in line with the univariate analysis we performed, where611

the same two pipelines had the highest (anti-) correlation with age (Figure 6). In addition,612

fewer ROIs showed a positive correlation with age for CAT and fMRIPrep-FSL than for other613

pipelines, which is in line with known GM atrophy with age [95–97]. Taken together, our614

results are in favor of CAT and fMRIPrep-FSL in regard to aging-related studies. Although615

some recent brain-age applications have shown that linear registration is preferable [16, 25],616

we decided to compare the whole VBM process using nonlinear registration. This choice617

was made so that we could approach the topic via a common space, permit the use of a618

parcellation atlas and facilitate the interpretability of the results.619

The user-centric approach we followed in this project does not allow for an extensive eval-620

uation of the potentials of the tools we used. CAT, ANTs, but to a certain degree also621

FSLVBM potentially can be tuned to provide more accurate brain-age predictions or re-622

gional associations to age. However, such an investigation is out of the scope of this work.623

To summarize, our results show that all steps of a VBM pipeline have a considerable impact624

on the GMV estimates, and therefore, different pipelines produce different results. These625

differences in GMV estimates are reflected in univariate as well as multivariate analyses. The626

choice of registration has the highest impact, followed by segmentation and brain extraction627

algorithm. In the specific case of age-prediction, we recommend the combination of ANTs for628

brain extraction and FSL for segmentation (as implemented in fMRIPrep) and FSL nonlinear629
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registration or CAT 12.8, with the latter having the advantage of being available as an off-630

the-shelf pipeline. The option of using a general template is preferred for age-related studies631

and likely other studies with a similar set up, especially when analyzing scans from multiple632

datasets.633
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Pantelis, and Eva Meisenzahl. Accelerated brain aging in schizophrenia and beyond: A neuroanatomical695

marker of psychiatric disorders. Schizophrenia Bulletin, 40(5):1140–1153.696

[15] J. H. Cole, S. J. Ritchie, M. E. Bastin, M. C. Valdés Hernández, S. Muñoz Maniega, N. Royle, J. Corley,697
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Supplementary Material981

- MRI acquisition details982

Sample Scanner Sequence Tesla Slices Voxel size (mm)
Time parameters
(TR / TE / TI [ms])

Other parameters
(FA/FOV [ o/mm])

eNKI
Siemens
Magnetom TrioTim

3D MP-RAGE 3T 176 1 x 1 x 1 1900/2.52/900 9/250x250

Cam-CAN Tim Trio Siemens 3D MP-RAGE 3.0T 192 1 x 1 x 1 2,250/2.99/900 9/256 x 256
IXI-Guys Phillips 3D MP-RAGE 1.5T 192 1.2 x 0.94 x 0.94 9.813/4.603/ 8/256 x 256
IXI-HH Discovery GE 3D FSPGR 3T 176 1.2 x 0.94 x 0.94 9.6/4.6/450 N/A /256 x 256
IXI-IOP GE N/A 1.5 N/A 1.2 x 0.94 x 0.94 N/A N/A /256 x 256

Table S.1: MRI acquisition details for the three datasets.

- Preprocessing983

All pipelines were run in a high-throughput compute cluster except CAT12.8, which was run984

in a high-performance computing cluster.985

- Study specific templates of each pipeline986

The templates created by CAT and ANTs appear to be sharper than those created by FS-987

LVBM. For ANTs, the template was 197x233x189; for CAT 175x199x175; and for FSL-based988

pipelines, 91x109x91. Templates built with eNKI are presented in Figure S.1, templates built989

based on CamCAN subjects can be found in Figure S.2 and for IXI in Figure S.3.990
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Figure S.1: Templates created for each pipeline. Default CAT and ANTs processes created
sharper templates.

Figure S.2: Templates created for each pipeline CamCAN dataset.
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Figure S.3: Templates created for each pipeline for the IXI dataset

- Initialization of ANTs Atropos991

It is worth mentioning that to follow our user-centric perspective, we used K-means clustering992

to initialize ANTs Atropos segmentation instead of some a-priori probability map. This993

resulted in relatively many subjects failing the preprocessing, as tissue samples were assigned994

unexpected labels by the K-means algorithm, resulting in confusion between white matter995

and gray matter. Although this could be approached by adjusting Atropos, such effort is out996

of scope of this project; instead, we performed custom quality control to detect such failed997

preprocessing.998

- Detailed results of age predictions999

Table S.2 shows the analytical results of age prediction when models are trained and tested1000

within each site.1001
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Pipelines Models
MAE per model

all datasets
MAE all models

all datasets

ANTs
General template

RVR 6.9

7.06
GPR 7.04
LASSO 7.32
KRR 7.00

ANTs
Data template

RVR 6.93

7.04
GPR 6.93
LASSO 7.35
KRR 6.95

ANTs FSLVBM
General template

RVR 6.56

6.55
GPR 6.34
LASSO 6.79
KRR 6.52

ANTs FSLVBM
Data template

RVR 6.71

6.74
GPR 6.46
LASSO 7.08
KRR 6.71

fMRIPrep FSL
General template

RVR 5.92

5.83
GPR 5.65
LASSO 6.15
KRR 5.59

fMRIPrep FSL
Data template

RVR 6.14

6.18
GPR 6.01
LASSO 6.51
KRR 6.06

FSLVBM
General template

RVR 6.25

6.17
GPR 5.93
LASSO 6.45
KRR 6.05

FSLVBM
Data template

RVR 6.60

6.55
GPR 6.30
LASSO 6.77
KRR 6.54

CAT 12
General template

RVR 6.48

6.39
GPR 6.26
LASSO 6.45
KRR 6.37

CAT 12
Data template

RVR 6.46

6.37
GPR 6.19
LASSO 6.47
KRR 6.37

Table S.2: Results of age prediction using a multivariate approach. Four models were tested
in the three datasets in a nested K-fold scheme. The third column contains the averaged
results of the three datasets per model. The last column shows the average of all datasets
and all models for each pipeline.

Table S.3 shows the analytical results of age prediction when the models are trained with1002
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two of the datasets and tested with the leftout dataset.1003
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Pipeline Models
Test
eNKI

Test
CamCAN

Test
IXI

Mean test
(datasets)

Mean test
(datasets & Pipelines)

ANTs
General template

RVR 7.39 8.43 8.23 8.02

7.86
GPR 7.19 7.94 8.27 7.80
LASSO 7.08 7.88 8.33 7.76
KRR 7.40 7.87 8.28 7.85

ANTs
Data template

RVR 7.48 8.26 7.88 7.87

7.86
GPR 7.80 7.74 7.53 7.69
LASSO 7.73 6.88 8.99 7.87
KRR 7.84 8.12 8.03 8.00

ANTs-FSL
General template

RVR 6.96 9.16 9.75 8.62

8.44
GPR 6.85 8.48 9.74 8.36
LASSO 7.60 7.97 9.88 8.49
KRR 6.73 7.91 10.28 8.31

ANTs-FSL
Data template

RVR 7.12 15.87 9.87 10.95

10.07
GPR 6.95 11.47 9.72 9.38
LASSO 7.51 13.94 8.45 9.97
KRR 7.04 13.33 9.54 9.97

FMRIprep-FSL
General template

RVR 6.25 5.58 7.47 6.43

6.26
GPR 6.10 5.63 7.13 6.29
LASSO 6.63 5.62 6.36 6.20
KRR 6.23 5.33 6.82 6.13

FMRIprep-FSL
Data template

RVR 6.83 6.56 6.12 6.50

6.21
GPR 6.61 5.79 6.06 6.15
LASSO 6.66 5.76 5.91 6.11
KRR 6.48 5.89 5.82 6.06

FSLVBM
General template

RVR 6.62 6.02 8.66 7.10

6.77
GPR 6.67 5.83 7.08 6.52
LASSO 7.23 6.09 6.88 6.73
KRR 6.43 5.77 8.00 6.73

FSLVBM
Data template

RVR 11.28 10.67 7.63 9.92

9.36
GPR 11.42 10.66 6.70 9.55
LASSO 10.95 9.82 6.69 9.16
KRR 11.14 9.78 6.74 9.22

CAT12.8
General template

RVR 6.75 6.53 6.39 6.55

6.45
GPR 6.71 6.88 5.88 6.49
LASSO 6.75 6.62 5.92 6.43
KRR 6.55 6.58 5.82 6.32

CAT12.8
Data template

RVR 6.83 6.81 6.25 6.63

6.76
GPR 7.14 6.53 6.02 6.57
LASSO 7.20 7.51 7.52 7.41
KRR 7.01 6.06 6.19 6.42

Table S.3: Cross-dataset age prediction results. For each pipeline we trained four models
using two of the datasets and predicted the age of the subjects on the third, left-out dataset.
The optimal parameters for each model were selected using a 5-fold cross validation scheme
in the training datasets. The second to last column contains the mean of each model across
all combinations of the datasets for training and testing for each pipeline. The last column
contains mean across models and dataset combinations for each pipeline.
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- Classifying subjects’ images based on the preprocessing pipeline1004

We used two methods to scale the features prior to classification, using a linear SVM: i) within1005

each feature and ii) within each subject, (both with standard scaling). The classification1006

results were close to perfect using both methods (Figure S.4).1007
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Figure S.4: Confusion matrices of multiclass classification of preprocessed subjects from all
pipelines using the preprocessing pipelines as labels. We tried two methods for scaling the
features aiming at ruling out that the overall intensity differences drive the classification.
We used standard scaling, which standardizes features by removing the mean and scaling
to unit variance, and MinMax scaling, which scales and translates each feature individually
such that it is in the given range on the training set, here between zero and one.
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- Harmonization across pipelines1008

The impact of harmonization across pipelines was also tested. We performed age-prediction1009

and pipeline-prediction as we did for non-harmonized data in 2.4 and 2.5. Harmonization1010

was performed using Neuroharmonize [98]. For age-prediction we selected eNKI processed by1011

fMRIprep-FSL, IXI processed by FSLVBM and CamCAN processed by CAT 12.8 all with a1012

general template. Table S.4 shows the age-prediction results when each of the three dataset1013

is processed by different pipeline and then all data are harmonized.1014

model
Train: eNKI-IXI
Test: CamCAN

Train: eNKI-CamCAN
Test: IXI

Train: CamCAN-IXI
Test: eNKI

Average

RVR MAE=10.7 MAE=8.11 MAE=7.9 MAE=8.9
GPR MAE=10.3 MAE=7.6 MAE=7.5 MAE=8.5

Table S.4: Brain age prediction results for harmonized data. The brain age prediction
process was performed using eNKI processed by fMRIprep-FSL, IXI processed by FSLVBM
and CamCAN processed by CAT 12.8 all with a general template. Data were harmonized
and then used for individuals age prediction with GPR and RVR as in 2.4.

The results of the pipeline classification with harmonized data are shown in Figure S.5.1015
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Figure S.5: Classification of pipelines based on harmonized GMV. Harmonization was per-
formed across pipelines and the rest of the process was as in 2.5.

- Univariate analysis chart1016

Figure S.6 illustrates the univariate analysis we followed.1017
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Figure S.6: Depiction of the process to calculate regional correlations across subjects for a
pipeline pair. For a given pair of pipelines (panels A and B in the figure) for each region, we
calculate the correlation across subjects. By performing this process for all pairs of pipelines
and all regions, we obtain a regional correlation matrix (panel D). The overall agreement
between the pipelines was calculated as the median for each region across all pipeline pairs,
which was then used to correlate with the size of the parcels (panel E). For each pipeline
and each region, we calculated Pearson’s correlation across subjects between regional GMV
(shown here for panel B) and age (panel C). Regional correlation values between pipelines
(panel D) or with age (panel F ) were projected on the brain for visualization purposes.

- Total GMV plots1018

The following image S.7 presents the total GMV of all subjects for each pipeline and each1019

dataset.1020
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Figure S.7: Total GMV of all subjects for all pipelines and all datasets. Important differences
in the total intensities between all pipelines. Only ANTs-FSL and CAT have similar means.
Not surprisingly, the template appears to have no impact on the total GMV of subjects.
High consistency is observed for the same pipelines across datasets.

- Similarity between pipelines as expressed by the regionwise Pearson’s correlation1021

across subjects for each pair of pipelines. For CamCAN in Figure S.9 and for IXI in S.10.1022

From the figures of the three datasets, we see that similarities are consistent across datasets.1023

However, some lack of variability is still identified, most likely due to differences in the quality1024

of the images among datasets.1025
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Figure S.8: eNKI: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines
with the highest correlation to age.
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Figure S.9: CamCAN: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines
with the highest correlation to age.
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Figure S.10: IXI: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines
with the highest correlation to age.
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Correlations of pipelines that differ only in the template for the three datasets S.111026

Figure S.11: Mean correlation of regions across subjects for all datasets between pipelines
that only differ in the template used for spatial normalization.

The correlation between differential identifiability and Pearson’s correlations1027

calculated between pairs of pipelines was examined to assess the agreement between the two1028

methods. The results can be seen in Figure S.121029
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Figure S.12: Strong correlations were observed between the two methods we used to assess
similarity between pipelines, the univariate analysis and identification. Especially between
the pipelines using the general template, the correlation was r = 0.955. For pipelines using
data-templates, the correlation was r = 0.8. The correlation for all pipeline pairs was
r = 0.841. All correlations had p < 0.05.

Age-ROIs correlations for all pipelines in Figure S.131030
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Figure S.13: Correlation between regions and age of subjects for all pipelines.

Table S.5 ANOVA results for correlation values between ROIs and age for all pipelines1031

across subjects of all datasets. Figure S.14 depicts the same correlation values between all1032

regions and age calculated across subjects of all datasets, per pipeline.1033

Dataset F score p-value
eNKI 509.99 4.18E-193 <0.05
CamCAN 400.45 5.11E-156 <0.05
IXI 637.771 5.18E-234 <0.05
All data 324.468 5.18E-234 <0.05

Table S.5: One-way ANOVA for the three datasets was performed for the three pipelines
that used general templates and had the highest overall correlation to age.
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Figure S.14: ROI-age correlations for all pipelines and all datasets. One-way ANOVA showed
that there were significant differences between pipelines in ROI-Age correlations.

Scatter plots for each pipeline demonstrate the size of each ROI on the x-axis and the1034

Pearson’s r value between ROI and age calculated across subjects. The first figure (Figure1035

S.21) is for the CamCAN dataset, and Figure S.22 is for IXI.1036

Paired comparisons of ROI-Age correlation values between pipelines1037

Figure S.15 shows pairplots of age-region correlations across subjects for all data, and Figures1038

S.16, S.17 and S.18 show for eNKI, CamCAM and IXI, respectively.1039
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Figure S.15:
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Figure S.16:
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Figure S.17:
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Figure S.18:
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The effect of region size1040

- Association between the overall similarity among the pipelines (calculated as the median1041

of agreement between pairs) and parcel sizes1042

Figure S.19: Median values from all pairs of pipelines of Pearson’s r correlations across
subjects for all regions plotted against the size of the regions. A nonsignificant correlation
was found for the eNKI dataset, and very low correlations were found for the other two
datasets.

-The association between the size of regions and the corresponding ROI-age correlation1043

values. CAT appears to have a higher association between the size of each ROI and the1044

correspondence correlation value with age for eNKI (r=-0.128 for both templates) and Cam-1045

CAN. ANTs had similar values but only for the eNKI dataset (=r=-0.121 for general template1046

and -0.125 for data template). For the IXI dataset, FSLVBM with the general template had1047

the highest values (r=0.102). Notably, FSLVBM had a positive correlation when ANTs and1048

CAT had negative values. Figure S.23 provides the same analysis when data from all the1049

datasets are combined.1050
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Figure S.20: Scatter plots with the y-axis representing regional correlation to age and the x-
axis representing the size of the corresponding ROI, for all pipelines estimated in all datasets.
For each pipeline, we estimated the Pearson’s r and p values. Red lines represent the linear
regression line.

Figure S.21: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the eNKI
dataset. For each pipeline, we estimated the Pearson’s r and p values. Red lines represent
the linear regression line.
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Figure S.22: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the Cam-
CAN dataset. For each pipeline, we estimated the Pearson’s r and p values. Red lines
represent the linear regression line.
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Figure S.23: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the IXI
dataset. For each pipeline, we estimated the Pearson’s r and p values. Red lines represent
the linear regression line.
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