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Abstract

Voxel-based morphometry (VBM) analysis is commonly used for localized quantification
of gray matter volume (GMV). Several alternatives exist to implement a VBM pipeline.
However, how these alternatives compare and their utility in applications, such as the es-
timation of aging effects, remain largely unclear. This leaves researchers wondering which
VBM pipeline they should use for their project. In this study, we took a user-centric perspec-
tive and systematically compared five VBM pipelines, together with registration to either a
general or a study-specific template, utilizing three large datasets (n>500 each). Consider-
ing the known effect of aging on GMV, we first compared the pipelines in their ability of
individual-level age prediction and found markedly varied results. To examine whether these
results arise from systematic differences between the pipelines, we classified them based on
their GMVs, resulting in near-perfect accuracy. To gain deeper insights, we examined the
impact of different VBM steps using the region-wise similarity between pipelines. The re-
sults revealed marked differences, largely driven by segmentation and registration steps. We
observed large variability in subject-identification accuracies, highlighting the interpipeline
differences in individual-level quantification of GMV. As a biologically meaningful criterion
we correlated regional GMV with age. The results were in line with the age-prediction anal-
ysis, and two pipelines, CAT and the combination of fMRIPrep for tissue characterization
with FSL for registration, reflected age information better.
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1 Introduction

Analysis of brain structure has provided important insights regarding its organization in
health and disease. T1-weighted (T1w) images obtained using magnetic resonance imaging
(MRI) are commonly used for this purpose. However, raw T1w images cannot be compared
directly due to their semiquantitative nature and inter- and intrasubject variability [1]. Vol-
umetric analysis of T1lw images using voxel-based morphometry (VBM) [2, B] allows the
investigation of the volumetric composition of brain tissues across subjects. It estimates
tissue volume in each voxel and brings individual brains in a common reference space per-
mitting comparison. VBM analysis has provided a plethora of valuable insights, for instance,
in neurodegenerative diseases [4H§| and psychiatric disorders [9].

VBM has been successfully applied to study aging [L0-12]. Recently, prediction of individ-
uals’ age based on VBM-derived information has proven to be a validated proxy for brain
integrity and overall health [I3HI5], and promising for individualized clinical applications
[14, 16HI9]. Brain-age prediction is an important and widely studied topic that aims to
estimate the trajectory of healthy brain aging [20, 21].

To estimate the GVM from T1w images, some specific steps must be performed. The main
steps of a VBM pipeline are as follows: i) Segmentation creates probability maps where
each voxel is assigned a probability of belonging to specific brain tissues, usually gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). Brain extraction, which is the
process of removing the skull from an image and leaving only actual brain tissues and CSF,
is also a segmentation process but in some cases is performed prior to segmentation of GM,
WM and CSF.

ii) Spatial registration/normalization to a reference brain space is performed so that
anatomical regions are aligned. The reference space can be either a general template (e.g.,
MNI-152) or a study-/data-specific template (henceforth referred to as data-template) [22-
24]. Data-templates are mainly used when comparing healthy subjects to patients to avoid
bias due to general templates constructed from healthy populations. Several ways exist to
create a data-template, and they are often created to match a standard space, such as the
MNI space. Most VBM pipelines come with a general template.

iii) Modulation of the normalized tissue estimates aims at preserving the original amounts
of tissue after spatial registration. To do so, normalized images are adjusted by the amount
of local volume changes.

Since the introduction of VBM in 1995 [2], several alternatives and a multitude of options
for each of the steps have been proposed. Even though various VBM pipelines utilize the
same steps, the order of the steps may vary, and each step might use a different algorithm
with several configurable options. Moreover, the pipelines can use those steps in a different
order or perform some of them simultaneously and /or iteratively. It is also possible to create
hybrid pipelines by combining the steps from different tools. Furthermore, optional steps,
for example, whether to create a data template or use a general template provided by a
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tool, add to the already vast number of choices. Consequently, even if a user chooses an
off-the-shelf VBM pipeline is not completely absolved of further choices. How the outputs
of VBM pipelines compare and their utility in different applications remain poorly studied,
which can lead to suboptimal choices [25H27].

Previous work comparing VBM pipelines indeed provides evidence for differences. A com-
prehensive comparison between Computational Anatomy Toolbox (CAT) [28] version 12.7,
two FSL-based and a hybrid (still FSL [29] dependent) pipelines has shown that the choice of
preprocessing pipeline has an impact both in age prediction and sex classification [30]. The
same study showed that regions driving the results are pipeline dependent, while the choice
of the templates used for registration, general or data-template, has little or no impact. FSL
and SPM [31] yield different outcomes, especially for cortical regions [32]. A comparison
focusing on registration and segmentation steps of SPM and FSL concluded that these pre-
processing steps drive the regions identified in multiple amyotrophic lateral sclerosis [26].
Segmentation and registration as implemented in SPM8 newseg, SPM8 DARTEL [33], and
FSLVBM were found to have substantial influence on GMV estimates and their relationship
to age [34]. This study additionally concluded that pipelines with limited degrees of freedom
for local deformations might overestimate between-group differences. Finally, the selection
of tissue probability maps (TPMs) as priors for segmentation systematically impacts the
segmentation outcome and, in turn, affects the statistical estimates [35]. The CAT12 VBM
pipeline was found to perform better in the detection of volumetric alterations in temporal
lobe epilepsy compared to the VBMS8 toolbox [36, [37].

Several studies have investigated the effects of individual VBM steps and their parametriza-
tion. A comparison of 14 deformation algorithms used for registration found that SyN [3§]
from the Advance Normalization Toolkit (ANTs) [39] and DARTEL (CAT) were among those
with the best performance, with SyN exhibiting the highest consistency across subjects [40]
as well as being among the most robust to noise, partial volume effects and magnetic field
inhomogeneities [41]. Segmentation algorithms from SPM, ANTs and FSL showed relatively
small differences in controls, but significant differences appeared when comparing brains with
atrophies, suggesting that the segmentation algorithm should be selected according to the
brain characteristics of the study-population [42]. Dadar and colleagues compared six seg-
mentation tools and confirmed significant differences between the tools as well as within-tool
differences based on interscanner analysis [43]. For brain extraction, although FSL-BET has
been reported to have low performance [42], it does not influence subsequent segmentation
[44]. A comparison of SPM12, SPM8 and FreeSurfer5.3 [45] showed that SPM12 estimates of
total intracranial volume (TIV) align better with manual segmentation [46]. SPM-based es-
timates in autism spectrum disorder and typically developing controls were closest to manual
segmentation in terms of TIV, followed by FreeSurfer, while FSL appeared to underestimate

TIV [47].

Taken together, different VBM pipelines produce different outcomes. The disagreement in
VBM pipelines hinders precise localization and valid interpretation of tissue volume in the
downstream analysis, e.g., atrophy in patients with multiple sclerosis [48-50]. To date, there
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is no standard method to calculate GMV or guidelines on which implementation of VBM is
appropriate for a study at hand, e.g., age prediction. Additionally, the interaction of different
algorithms and parameters in each step of VBM for estimating GMV and their effect on age
estimates across the adult life-span, has not been thoroughly investigated. Moreover, the
utility of a data-template created from healthy subjects and how it compares with a general
template, especially in cross-site studies, remains unanswered. Here, to fill this gap, utilizing
three large datasets (each n>500), we compared and evaluated five VBM pipelines including
two off-the-shelf workflows and three modularly constructed pipelines utilizing commonly
used neuroimaging tools. Each pipeline was implemented in two versions, one using a general
template and one using a data-template, resulting in a total of 10 VBM pipelines. To
remain consistent with our user-centric approach and developer guidelines, we adopted the
default parameters unless there were specific recommendations from the developers [51].
First, we investigated whether different VBM pipelines produce GMV estimates that lead
to different results in machine-learning-based predictions of individuals’ chronological age.
We also calculated regional correlation to age, as GMV is known to decrease with age in
healthy subjects. This extrinsic evaluation provides a more objective and utilitarian proxy
for comparison [19, 20, 52], 53] and a criterion based on biological factors. Additionally, we
showed that the pipelines indeed produce distinct patterns of GMV using machine-learning-
based classification. Specifically, we address the following questions:

How do the pipelines differ at the region- and the subject-level?

What impact do brain extraction, segmentation and registration have on GMV?

What is the effect of using a data-template compared to a general template?

How do the pipeline outcomes compare in univariate and multivariate analyses?

Which pipeline better reflects brain aging and performs best in brain-age prediction?

With this comprehensive and systematic comparative analysis of VBM pipelines, we aim to
provide essential information and recommendations to researchers to help them select the
VBM pipeline that best matches their research goals.
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2 Materials and Methods
2.1 Datasets

We analyzed T1w images of healthy individuals from three large datasets covering the adult
lifespan,

eNKI [54]: population based sample of n=953 subjects, of which 573 had no psychiatric or
neurological disorders or medication at the time of the scan (48.14£17.2 years, 630 female).
CamCAN [55], 56]: n=634 aging individuals without serious psychiatric conditions or cogni-
tive impairment (54.8+=18.4 years, 320 female). IXI [57]: multisite sample of n=582 normal
and healthy subjects (49.44+16.7 years, 324 female). (Table in Supplementary Material)

2.2 Pipelines

CAT [28], a popularly used off-the-shelf VBM tool, is a successor of the first VBM pipeline
implemented in SPM [3]. Here, we used the latest version CAT12.8 (r1813). Several general-
purpose neuroimaging tools also provide functionality that can be used to create VBM
pipelines. FSLVBM [58] uses tools from FSL [29] and is also widely used. ANTs [39]
provides broad image processing and image analysis functionality, including all functions
needed to perform VBM. Hybrid VBM pipelines that combine the functionality of different
tools can be constructed, e.g., using fMRIPrep [59], which performs brain extraction using
ANTs and then performs the rest of the steps using FSL.

We devised five VBM pipelines following the recommended steps and settings in the literature
[39]: ANTs, ANTs-FSL, fMRIPrep-FSL, FSLVBM, and CAT. These pipelines were selected
to reflect the choices that are common practice and easy to use. We used each pipeline
with a standard template (the default templates for CAT and FSLVBM) irrespective of the
dataset (general template) and with a dataset-specific template that was created and used
for registration (data-template). Together, this resulted in ten pipelines.

2.2.1 ANTs

We used ANTSs version 2.2.0. First, each scan was corrected using the N4 bias field correction
[60] and then segmented to select intracranial tissues using Atropos-based brain extraction
[61]. Next, Atropos segmentation initialized with K-means was applied to segment the images
into GM, WM and CSF. The GM-map images were registered to a template (general or data-
specific) using a sequence of transformations. First, rigid body and affine transformations
were applied, followed by a nonlinear BsplineSyN transform with the parameters set as in [62].
The Jacobian matrix from the spatial transformation was used to modulate the segmented
GM. Data-specific templates were created using the ANTs build template method with
default values. To create the template images, the transformations were averaged and used
iteratively [39, [63]. To keep the template shape stable over multiple iterations of template
building, the inverse average warp was calculated and applied to the template image.

To facilitate the analysis, the data-template process was initialized using a general MNI
template. Therefore, the final data-template was also in the MNI space. For all processes
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requiring tissue masks and templates as well as for the registration to MNI, we used the [CBM
152 Non-linear Asymmetrical template version 2009a and corresponding tissue probability
maps [64] [65].

2.2.2 FSLVBM

We used FSL version 6.0. The images were prepared by automatically reorienting and then
cropping part of the neck and lower head. Then, BET was used to extract the intracranial
part of the brain, which was then segmented into GM, WM and CSF using FAST. Data-
specific templates were created following FSLVBM’s process utilizing all GM images from a
given dataset. GM segmented images were affinely registered to the ICBM-152 GM template,
concatenated and averaged. This averaged image was then flipped along the x-axis, and the
two mirror images were then reaveraged to obtain a first-pass, study-specific af fine GM
template. Second, GM images were reregistered to this a f fine GM template using nonlinear
registration, averaged and flipped along the x-axis. Both mirror images were then averaged
to create the final symmetric, study-specific, non — linear GM template. The resulting
data-template was in the MNI space. The GM images were then nonlinearly registered to

the template (either general or data-specific) and modulated. As the general template, we
used the FSL-provided template (see Table .

2.2.3 fMRIPrep-FSL

The reportedly poor quality of BET in brain extraction might lead to spurious results [42];
thus, we decided to test a pipeline that uses a better brain extraction as provided by ANTs
followed by FSL for the rest of VBM processing. As fMRIPrep has been well validated and
is gaining popularity, we chose to use the output of the fMRIPrep’s structural processing.
In this hybrid pipeline for image preparation and segmentation, we used fMRIPrep version
stable 20.0.6 [59], which uses ANTs version 2.1.0. Each Tlw volume was corrected for
intensity nonuniformity (INU) using N4BiasFieldCorrection [60] and skull-stripped using
‘antsBrainExtraction.sh® (using the OASIS template). Brain tissue segmentation into CSF,
WM and GM was then performed using FSL FAST [66] (as used by the fMRIPrep FSL
v5.0.9). This FAST parametrization diverges from the one in FSLVBM in the following
parameters: (i) the Markov random field (MRF) beta value for the main segmentation
phase was set to H=0.2, while the default value in FSLVBM was 0.1, and (ii) the MRF beta
value for mixeltype was R=0.2, while the default in FSLVBM was 0.3. Template creation,
spatial normalization, and modulation were identical to the FSLVBM pipeline.

2.2.4 ANTSs-FSL

The exact same processing, as mentioned above in the ANTs pipeline, was used to prepare
the images, correct bias field noise, perform brain extraction and finally perform tissue
segmentation using ANTs’ Atropos. The creation of a data-specific template, registration
and modulation were implemented as in the FSLVBM pipeline. Note that the difference
between this pipeline and the fMRIPrep-FSL pipeline is the tissue segmentation tool used.
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2.2.5 CAT

CAT12.8 was used based on SPM12 (v7771) using MATLAB (R2017b) and compiled for
containerization in Singularity (2.6.1). CAT provides a complete VBM pipeline including
denoising with spatial-adaptive nonlocal means, bias-correction, skull-stripping, and lin-
ear and nonlinear spatial registration. Images are segmented by an adaptive maximum
a-posteriori approach [67] with partial volume model [68]. For nonlinear transformation, the
geodesic shooting algorithm [69] is used. As the default template, an IXI-based template
transformed to MNI152NLin2009cAsym is provided. For the data-template, initially, all
structural T1 images are segmented into GM, WM, and CSF and spatially coregistered to
the MNI standard template using affine registration. The affine tissue segments were used
to create the new sample-specific geodesic shooting template that consists of four iterative
nonlinear normalization steps.

Table [I] summarizes the VBM steps of each pipeline we utilized in our analyses.

- - . Template Registration/
Pipeline Skull stripping Segmentation (general /data-specific) Modulation
. . ICBM MNI152N1in2009a . .
ANTs ANTs Brain Extraction | Atropos AntsBuildtemplate ANTsRegistration

ICBM MNI152Nlin6th generation

ANTs-FSL ANTSs Brain Extraction | Atropos FNIRT
fslvbm_2_template

fMRIPrep-FSL | ANTSs Brain Extraction | FAST ICBM MNT152NIin6th generation | pypp
fslvbm_2_template

FSLVBM BET FAST ICBM MNI152Nlin6th generation FNIRT
fslvbm_2_template

T N = ; .
CAT CAT CAT ICBM MNI152N1in2009¢ based CAT

CAT

Table 1: Software/algorithm used for the main VBM steps in our analysis pipelines.

2.3 Parcellation scheme and quality control

To decrease the dimensionality of the data and thereby facilitate informative comparison
and the use of machine-learning approaches, we extracted region-level averages. However,
to preserve good spatial resolution, we selected a high granularity parcellation scheme. A
combination of three atlases covering the whole brain and together constituting 1073 regions
of interest (ROIs) was used: 1000 cortical regions from the Schaefer atlas [70], 36 subcortical
regions from the Brainnetome Atlas [71] and 37 cerebellar regions [72]. Regional GMV values
were calculated as the average of nonzero voxels within each region.

ANTs segmentation (Atropos), which was initiated with k-means, in some cases returned
tissues in a different order, resulting in selecting the WM instead of the GM for further
analysis. Therefore, we employed the following quality check to ensure that selected tissue
represented GM. First, we discarded individuals who had a ratio of the mean of GM voxels
over the mean of WM and CSF voxels of less than 1.5. Furthermore, images that were
close to the 1.5 threshold as well as randomly sampled images were visually inspected for
quality of segmentation. Because developing a thorough quality check or tackling this issue
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inside Atropos is out of the scope of this work, the threshold for the ratio of mean GM over
WM and CSF was experimentally identified. Although CAT has an internal quality control
method, for consistency, we applied our test to all pipelines. We retained only subjects who
passed the quality checks across all the pipelines.

2.4 Age prediction

We performed machine-learning-based analysis to predict the age of each subject using re-
gional GMVs from each pipeline as features. We chose this as a suitable test given that age
is reliably associated with GMV [19, 20, 52}, 53] and because of the increasing importance of
brain-age as a proxy for overall brain health [52], [73-75]. All features were standardized by
removing the mean and scaling to unit variance in a cross-validation (CV)-consistent man-
ner [76]. We utilized four machine-learning algorithms: relevance vector regression (RVR)
[77], Gaussian process regression (GPR) [78], least absolute shrinkage and selection operator
(LASSO) [79. 80], and kernel ridge regression (KRR) [81], in a nested 5-fold CV scheme re-
peated 5 times [82]. The age prediction performance was evaluated using the mean absolute
error (MAE). To ensure that differences were not driven by factors other than the pipelines,
we used the same data (subjects and regions) and models for each pipeline.

The evaluation was performed in two set ups, intradataset, and interdataset. In the inter-
dataset evaluation, the models were trained using two datasets and then used to predict the
third hold-out dataset. This analysis was performed for each pipeline separately.

2.5 Classification of pipelines

To confirm the existence of systematic differences in the outcomes of the pipelines, we per-
formed machine-learning-based predictive analysis based on the multivariate patterns of
regional GMV. The idea behind this analysis is that if a model can classify the pipeline
producing a GMV image with a high accuracy, that would indicate that the model learned
systematic differences between the VBM pipelines. We performed 10-class classification
with subjects’ regional GMVs as features and the pipelines as class labels. The features
were standardized by removing the mean and scaling to unit variance in a CV-consistent
manner [76] in two ways: i) within each feature and ii) within each subject. The former is
standard preprocessing, while we implemented the latter to guard against trivial biases such
as magnitude shifts. We used a linear support vector machine (SVM) with the default cost
parameter of C=1 in a 5-fold CV scheme repeated 5 times.

2.6 Individual-level identification

We examined the within-subject consistency of GMV patterns when processed by different
pipelines. To do so, we identified subjects across pipelines using a nearest neighbor search.
Using each pipeline as a reference (query), we tried to match each subject with all the
subjects of each other pipeline (database). As an identification metric, we used Pearson’s
correlation between two subjects’ regional GMVs [83] [84]. Each subject was matched with
the subject from another pipeline with the highest correlation coefficient. The identification
performance between two pipelines was calculated using the differential identifiability (Idiff)
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metric [84].

2.7 Region-level comparison

To obtain a better understanding of regions driving the differences between pipelines, we
assessed the similarity in regional GMV estimates from different pipelines using univariate
statistical analysis. These analyses were performed for subjects from all datasets combined
as well as separately for each dataset. We estimated similarity in regional GMVs across
subjects using Pearson’s correlation coefficient for all possible pipeline pairs (in total 45).
To investigate whether the size of parcels affects the regional similarities, we calculated for
each ROI the median of correlation coefficients across the pairs of pipelines and correlated
it with the number of voxels per region (see Figure in the Supplementary Material).

For all arithmetic operations on Pearson’s r values, first Fisher’s z transform was applied,
and then the result was transformed back to Pearson’s r value.

2.8 Extrinsic evaluation of similarity between pipelines

The pipeline comparisons described above are intrinsic in nature. Thus, although they pro-
vide important information regarding differences between the pipelines, they do not provide
information regarding the correctness of the pipelines in estimating the GMV. Such a cor-
rectness assessment, although desirable, cannot currently be achieved due to a lack of ground
truth data. Instead, we compared the pipelines based on their utility in capturing age-related
information.

We first tested to what degree regional GMV estimates from each pipeline reflect subjects’
age using univariate statistical analysis. To do so, we computed Pearson’s r between the
regional GMVs and subjects’ ages for each pipeline separately. The resulting p values were
corrected to control for the familywise error rate [85] due to multiple comparisons, again for
all data combined as well as separately for each pipeline. We then performed an analysis of
variance (ANOVA) to test whether the means of the correlation coefficients were significantly
different.

Machine-learning-based analyses were performed using scikit-learn [86].
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3 Results

3.1 Preprocessing and data-templates

For CAT and fMRIPrep, less than 0.4% of all subjects failed the preprocessing. For CAT, all
outcomes passed our quality check. For FSLVBM, less than 2% of the subjects failed the QC.
For fMRIPrep-FSL, there were slightly fewer subjects who failed QC than for FSLVBM. A
considerable number of subjects failed ANTs segmentation (13% for eNKI, 5% for CamCAN
and 12% for IXI). The QC results for the hybrid ANTs-FSL pipeline were similar to those of
ANTs. The final number of subjects who qualified for further analyses was n=741 for eNKI,
593 for CamCAN and 418 for IXI (total n=1752).

The data-templates created by CAT and ANTs were sharper and more similar to general
templates than those created by FSLVBM (templates are demonstrated in the Supplementary

Material in Figures , , .

3.2 VBM pipelines produce different results

3.2.1 Brain age prediction

We first performed individual-level prediction of chronological age using regional GMVs
as features using four machine-learning algorithms (Figure [1)). Within-dataset CV perfor-
mance considerably varied among pipelines (Figure (1| (a)). The average performance across
the learning algorithms and datasets was highest for the fMRIPrep-FSL general template
(MAE = 5.83), followed by the FSLVBM general template (M AE = 6.17) and fMRIPrep-
FSL data-template (M AE = 6.18). CAT with the data-template and with the general
template showed similar performance of M AE = 6.37 and 6.39, respectively. The best aver-
age performance across datasets was achieved by the fMRIPrep-FSL general template with
KRR (MAE = 5.59). ANTs performed the worst on average. All four learning algorithms
generally showed similar performance for each pipeline (Supplementary Material Table .

For cross-dataset predictions (Figure |1] (b)), the best performance averaged across datasets
and models was again achieved by the fMRIPrep-FSL pipelines, with the data-template
(MAE = 6.21) performing slightly better than the general template (M AE = 6.26) closely
followed by CAT general template (M AE = 6.45). Here, the best overall predictions were
again provided by the KRR algorithm. For the fMRIPrep-FSL data-template and general-
template M AE was 6.06 and 6.13, respectively. For CAT, M AE = 6.32 and 6.42 with the
general template and data-template, respectively. ANTs-FSL-derived GMVs performed the
worst on average (Supplementary Material Table .

10



337

338

339

340

341

342

343

'
Mean Absolute Error
w IS “w o ~ ©

N

-

6.55 6.55 6.39 6.37
6.18 6.17
j ‘ 83
0l

e & &> & > RS 2B [
# &5 s S & S S5 O
° i ‘? 2%, b O o S
Ea a? & o 5
BN RVR  mem GPR  mmm [ASSO WM KRR  ®EE Mean Pipelines
b) 17 @ —#— eNKI
—&— CamCAN
== IXI
144 .
[ ]
124
* * *
*
E + 10.07 [ .
E 10 st o0 937
5 © 8.45 .
g o 94+ 4+ 7.86 .
<
e * 677 +f, 6.76
H l +6.26 ok, 6.21 M 9y, 645 i
Q
i I
4]
24
0d
Nl o, Vs o o N N o
504 & @Q S “" M3 Py e 4‘:@‘? S Tl
i EA $0° & & G A & A
s © v & oA o s o« § g
& & & & ¥ ¥

Pipelines

Figure 1: Age prediction for each pipeline. Blue, orange, green and red bars represent the
averaged results of the three datasets per machine-learning algorithm, and the purple bars
show the mean across models and datasets. a) Models trained and tested in the same dataset.
Four models were tested using the three datasets in a nested K-fold cross-validation scheme.
b) Age prediction for each pipeline when trained with two of the datasets and tested in the
left-out one. Blue stars show the prediction performances on eNKI data, light blue circles
the performances on CamCAN data, and black crosses on IXI data.

3.2.2 Machine-learning analysis confirms distinct GMYV patterns

The machine-learning approach classified the pipelines with a near-perfect accuracy close
to 100%. To rule out the possibility that this high accuracy was driven by systematic
differences, that is, some pipelines over- or underestimating the GMV overall (which is
indeed the case, see Supplementary Material Figure, we performed an additional analysis
where each subject’s feature vector was z-scored independently, in effect removing the overall
differences in GMV estimates. This analysis also resulted in high classification accuracy for

11
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all the datasets, close to 100%. Detailed results are provided in the Supplementary Material
(Figure [S.4).

3.2.3 Identification shows individual-level differences

Pipelines differing only in the template showed high differential identifiability 43>Idiff>29.
fMRIPrep-FSL and FSLVBM, both with data-template, had the highest Idiff= 45, followed
by the two ANTSs pipelines (Idiff= 43). The two CAT pipelines had the lowest mean Idiff
values, with the data-template pipeline being the lowest. FSLVBM with data-template
had the highest mean Idiff. Pipelines using FSL for registration and modulation, with a
general template, had a mean Idiff= 33.7. The same pipelines with a data-template showed
mean Idiff= 37.7. ANTs-FSL and fMRIPrep-FSL, when both using a general template had
Idiff= 35 and when using a data-template Idiff= 34. Finally, ANTs and ANTs-FSL, which
differ in registration (and modulation), had Idiff= 29 when both used general templates and
Idiff= 30 for data-templates (Figure [2).
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Figure 2: Identification performance in terms of differential identifiability. We used Pearson’s
coefficient to calculate similarity between subjects. The highest mean Idiff was found for

FSLVBM data-template followed by ANTs general template. The two CAT pipelines showed
the lowest mean Idiff values.

3.2.4 Univariate analysis and region-wise similarity

To better understand whether some VBM steps drive differences in the GMV estimates more
than others, as well as to identify the regions showing significant differences, we performed
several univariate statistical analyses. Some of the pipelines differ only in a single step;
therefore, by examining the similarity between them, insightful conclusions can be extracted
about the effect of this specific VBM step. We observed that the overall agreement between
the pipelines, based on the median of the pairwise correlation values, varied across the
regions, while most of the regions showed only low-to-moderate agreement (Figure . Only
the regions close to the cingulum, temporal lobes and fusiform area showed relatively high
agreement across the pipelines (median r > 0.6). Most of the subcortical regions showed low
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agreement (median r < 0.4), except the caudate (median r > 0.6). In the cerebellum, all
regions showed a median r < 0.6. Overall, these results indicate a low agreement across the
pipelines.
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Figure 3: Median values of regional correlations calculated across subjects of all pairwise
combinations of pipelines. The frontal lobe, subcortical regions and cerebellum showed lower
similarity. First, correlations between regional GMVs across subjects were calculated for each
pipeline pair. The median of these 45 values was then calculated as an overall agreement
among the pipelines for each region.

The regionwise similarity between pairs of pipelines differed substantially. While ignoring
pipeline pairs that differ only in the template (which are expected to be similar), maximum
similarity was observed between fMRIPrep and FSLVBM both using a data-specific template
(average r = 0.76), while the minimum similarity was between ANTs-FSL using the general
template and CAT with both templates (average r = 0.306) (Figure [4]).
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Figure 4: Histograms of regional interpipeline similarity for all pairs of pipelines. For each pair, we calculated Pearson’s r
coefficient for each region across all subjects. We used the Holm-Bonferroni method to correct for multiple comparisons.
The histograms shown consist of those regions that survived the multiple comparison (p < 0.05).
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3.2.5 Comparison between ANTs and CAT

High similarities were observed between the CAT and ANTs pipelines, despite differences
in the steps, the order of the steps and the algorithms for each step. The highest similarity
was observed when using the general templates (which themselves are different, as shown
in Table |1)) with » = 0.72 followed by r = 0.66 between the ANTs data-template and the
CAT general template. A slightly lower similarity, of » = 0.65 was estimated when both
pipelines used the data-templates as well as between the ANTs general template and the
CAT data-template.

3.2.6 Effect of Registration, Segmentation, and Brain extraction
In the subsequent analyses, we compared pipelines differing in specific VBM steps to assess
their specific impact.

Regionwise similarity between ANTs and ANTs-FSL that differed only in registration (and
therefore in modulation) using the general template was moderate to low, average r = 0.51.
When using data-specific templates, the similarity was higher for all data (0.58) but also for
each of the three datasets (Figure | (a)).

ANTs-FSL and fMRIPrep-FSL share the same steps besides segmentation. When using
the general template, the average region-wise similarity was 0,67, and for the data-specific
templates, the corresponding value was 0.68 (Figure || (b)).

FSLVBM and fMRIPrep-FSL differ in the brain extraction step. When both pipelines
utilized the default FSL template, they had a similarity of 0.67. When the registration
was performed using their respective data-specific template, the similarity increased to 0.76

(Figure [5] (c)).

Overall, similarities were higher when data-templates were used.
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Figure 5: a) Histograms of regionwise correlation values between selected pairs of pipelines
for all datasets. The r value represents the average correlation of all regions (that survived
the Holm-Bonferroni correction) after transforming them to Fisher’s z and then reverse
transformed to r. The pipeline pairs are categorized according to the template they use
in the registration step. i) Correlation between ANTs and ANTs-FSL, which differ only
in the registration step. i) ANTs compared to fMRIPrep-FSL. These two pipelines differ
only in the segmentation step, as fMRIPrep utilizes FSL-based segmentation. Segmentation
imposes fewer differences than registration, i) FSLVBM and fMRIPrep-FSL only differ in
the brain extraction step. This step has a similar effect to segmentation when a general
template is used and higher similarity when a data-template is used. The data-specific
template comparisons are also provided here for convenience reasons, although it should be
noted that the template creation steps may differ for the pipeline pairs, resulting in the usage
of different data-specific templates. b) Brain maps with regional similarity of selected pairs
of pipelines calculated using all data. Similarity values are expressed in Pearson’s r and
were corrected using the Holm-Bonferroni method. Light blue represents regions without
a significant association (p> 0.05) and blue represents regions with a negative correlation
(r < 0). i) High similarity in subcortical areas and increased differences in cortical areas,
especially when using a general template. i) Different segmentations seem to have affected
the cerebellum, subcortical areas and the posterior and anterior areas of the same axial
level for both templates. iii) Brain extraction when using a general template caused more
differences in the subcortical areas, superiorl&ontal and the upper part of the cerebellum.
It is noteworthy that negative values appear in the superior frontal lobe.
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For ANTs compared to ANTs-FSL, the highest similarity values were in subcortical areas,
and the lowest similarity values were in the ventrolateral and dorsolateral prefrontal cortices,
especially when using a general template (Figure [5[ b(7)). ANTs-FSL and fMRIPrep-FSL
showed the least similarities in subcortical areas, the occipital lobe and prefrontal cortex
(Figure 5| b(i7)). Finally, FSLVBM and fMRIPrep-FSL had the lowest similarity values in
the subcortical areas, and the highest values were in the temporal lobes, medial prefrontal
cortex and cingulate gyrus (Figure [5|b(ii7)).

For each of the three datasets, similar figures separately with histograms of regional correla-
tion values and Nifti files with all regional correlation values for the other pairs of pipelines
can be found in the Supplementary Material.

3.2.7 Pipelines with the same registration

ANTs-FSL and FSLVBM, which share only the registration step, had a similarity of 0.59
for all data when using either the FSL default or the data-specific template. The similarity
for the eNKI dataset was 0.65 for both templates; for the CamCAN dataset, the similarity
was 0.60 for the general template and 0.63 for the data-template and 0.56 and 0.58 for IXI
dataset, respectively.

3.2.8 General template versus data-specific template

The pipelines differing in the template, i.e., either general or a data-template, showed varying
degrees of similarity (Table [2). The highest similarity was for CAT (r > 0.9), followed by
ANTs (> 0.86) in all three datasets. The similarity was low to moderate for the three
pipelines using FSL for registration and template creation steps (ANTs-FSL, FSLVBM, and
fMRIPrep-FSL). Specifically, ANTs-FSL had a mean similarity across the three datasets of
r = 0.71, fMRIPrep-FSL 0.66 and FSLVBM 0.59.

General template compared to the data-specific template

ANTs | ANTs-FSL | fMRIPrep-FSL | FSLVBM | CAT

eNKI | 0.879 0.718 0.646 0.573 0.908
CamCAN | 0.876 0.694 0.678 0.596 0.910
IXI | 0.864 0.713 0.668 0.605 0.916
Mean | 0.873 0.708 0.664 0.591 0.911

All data | 0.859 0.699 0.662 0.585 0.894

Table 2: The average values of regionwise correlation calculated across subjects for each
pipeline when using a general template and a data-template. The mean across datasets
is also presented, as well as the values from the same analysis performed with data from
all datasets. It is noteworthy that when all data were combined, there was not an overall
template created, but subjects were registered to the corresponding dataset template.

Univariate analysis is in line with the identification Idiff results. Pearson’s r between the

Idiff values and the regionwise correlations of pairs of pipelines was high, » = 0.841,p < 0.05
(more details in Supplementary Material Figure [S.12)).
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3.3 Association with age

3.3.1 Correlation between age and regional GMV

We performed univariate analysis to assess how regional GMVs capture aging-related infor-
mation. CAT showed the highest average correlation magnitude between regional GMVs and
age irrespective of the template used for all datasets, followed by fMRIPrep-FSL with the
general template. For CAT, the mean correlation across datasets was r = —0.410 and —0.406
with a general template and data-specific template, respectively (Table . The distribution
of regional GMV-age correlation values was more narrowly distributed for CAT and ANTs,
while they were more broadly distributed for pipelines using FSL (Figure [6] (a)). Overall,
the regional GMV-age correlation was markedly different between the pipelines (Figure @
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Figure 6: Correlation between regional GMV and age across subjects for the eNKI dataset.
CAT had the fewest regions with a positive correlation with age (n=6 for the general tem-
plate and 7 for the data-template). A few more regions with positive correlations had
ANTs (n=27, n=31) and fMRIPrep-FSL (n=29 and 31). ANTs-FSL and FSLVBM have
significantly higher numbers of regions with positive correlations as well as regions with non-
significant correlations (p>0.05). Regions with positive or nonsignificant correlations appear
transparent in the brain images. For ANTSs, the cerebellar regions and regions of cingulate
gyri and limbic lobes. ANTs-FSL and FSLVBM demonstrated the most regions with a pos-
itive correlation with age. The cerebellum in FSLVBM shows a very small association with
age, while in ANTs-FSL, cerebellar regions have more medium to high r values. Finally,
fMRIPrep-FSL and CAT have small r values in the superior parietal and occipital lobes and
medium to high r values in the frontal parts of the brain.

sa One-way ANOVA revealed a statistically significant difference in the average r-coefficients
a5 of regional GMV and age between at least two pipelines for all datasets (Supplementary
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General templates

ANTs | ANTs-FSL | fMRIPrep-FSL | FSLVBM | CAT

eNKI -0.258 | -0.182 -0.324 -0.155 -0.388
CamCAN | -0.264 | -0.197 -0.411 -0.224 -0.425
IXI -0.274 | -0.163 -0.337 -0.151 -0.416
Mean -0.265 | -0.181 -0.357 -0.177 -0.410
All data | -0.253 | -0.188 -0.357 -0.168 -0.381

Data-specific template
ANTS | ANTs-FSL | fMRIPrep-FSL | FSLVBM | CAT 12

eNKI -0.262 | -0.188 -0.291 -0.145 -0.385
CamCAN | -0.260 | -0.193 -0.365 -0.202 -0.421
IXI -0.270 | -0.157 -0.298 -0.140 -0.413
Mean -0.264 | -0.179 -0.318 -0.162 -0.406
All data | -0.253 | -0.174 -0.319 -0.155 -0.370

Table 3: Pearson’s r-values were calculated between age and all regional GMVs across sub-
jects. r-values were transformed to Fischer’s z averaged and transformed back to r-values.
CAT with the general template and with the data-template appears to preserve age-related
information better than the other pipelines, followed by fMRIPrep-FSL and ANTs. There
is high consistency between datasets, with CamCAN showing a higher relation to age for
those pipelines that use FSL for registration and CAT.

Material Table [S.5]).

3.3.2 Comparison of regional age information between pipelines

The regional GMV-age correlation values not only differed but also showed opposing effects
(Figure . In other words, some regions showed a positive correlation with age in one pipeline
but a negative correlation in another pipeline (see Supplementary Material Figures
and [S.18). In particular, this was the case for FSLVBM and ANTs-FSL, which contained
many regions with a positive correlation with age. Strikingly, the same two pipelines also
exhibited a large number of regions with opposing correlations with age when using a different
template.

When using all data, CAT had n_rois = 6 ROIs with a positive correlation to age when using
either template. fMRIPrep-FSL had n_rois =27 with the general template and 22 with the
data-template, and ANTs had n_rois = 56 for both templates. ANTs-FSL and FSLVBM had
n_rois = 218 and 280 regions positively correlated to age when using a general template and
184 and 226 regions when using a data-template, respectively. Two regions in the thalamus
showed a positive correlation with age for all pipelines. In general, the regions with a positive
correlation with age for all pipelines were mostly subcortical.
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Figure 7: Pearson’s r values between regional GMV and age calculated across subjects for
selected pipelines plotted against the same measurements for other pipelines. The upper
left and lower right quadrants of each subplot contain those regions that have correlations
to age with opposite signs/directions between the two pipelines. ANTs-FSL and FSLVBM
have the most ROIs with positive correlations to age. Here, we selected a few pipelines that
cover the spectrum of the main tools we used and better illustrate how the same regions in
different pipelines can have opposite relations to age. All pipeline combinations can be seen
in Figure in the Supplementary Material.

3.3.3 Effect of Parcel size

We examined whether parcel size was associated with the agreement among the pipelines and
with the agreement between ROIs and age. We observed no or marginal association between
the overall similarity among the pipelines (calculated as the median of agreement between
pipeline pairs) and parcel sizes (Pearson’s correlation, all data: r» = —0.08,p = 0.006,
eNKIL: r = —0.02,p = 0.51, CamCAN: r = —0.11,p = 0.0002, IXI: » = 0.07,p = 0.022)

(Supplementary Material Figure [S.19)).

Correlation values between parcel size and the corresponding regional correlation values to
age for each pipeline varied between pipelines as well as between datasets. The highest
correlation was for CAT, with » = —0.145 when using the general template and r = —0.134
with the data-template (both p < 0.05). ANTs showed the next closest relation between
parcel size and regional association with age, with » = —0.105 when using a general template
and r = —0.101 when using a data-template (both p < 0.05). Those marginal negative
correlations indicate that the fewer voxels are in an ROI, the better the relation of this ROI
to age. All other correlation values were rather small, indicating that overall, the parcel
sizes did not impact our results (Supplementary Material, for all data combined Figure ,

eNKI Figure [S5.20] CamCAN Figure and IXI Figure [S.22)).
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4 Discussion

“Which tool shall T use to perform my VBM analysis?”, this is one of the very first questions
that a researcher asks before starting a VBM study. The choice is often based on the
literature or familiarity or recommendations. The current lack of an in depth comparison
between VBM pipelines, the impact of the main steps on the outcome, and their utility
precludes informative choice. Sparked by that, we compared 10 VBM pipelines derived from
widely used tools on three large datasets covering the adult lifespan, acquired in different
scanners and protocols. Two of the pipelines consisted of VBM steps from different tools.
Our experiments were designed to facilitate a user-centric and systematic evaluation, which
allows us to derive robust conclusions. Moreover, it permitted the examination of the effect
of template use, i.e., general and data-template, as well as the effect of individual VBM
steps.

Overall, we made the following observations based on analysis of the GMV estimates from
different perspectives. The differences in individuals’ brain-age predictions confirmed that
different VBM pipelines produce different GMVs (Figure |1, Tables & . The sys-
tematic differences between the pipelines were further confirmed by the high accuracy when
predicting the pipelines using their GMVs (Figure . A detailed univariate analysis of
across-subject correlation (Figures |4)) and identification using the subject-specific multivari-
ate GMV pattern (Figures [2) showed that the individual steps of the VBM process as well
as the choice of the template lead to the differences in the GMV estimates (see also Figure
and Table . Differences in GMV in turn impact the way age is reflected as we saw in
univariate analysis correlating regional GMV with age (Figure |§| and Table |3)).

First, we sought to establish whether the pipelines indeed lead to different results in appli-
cations. To this end, we performed predictive analysis using regional GMV as features and
four machine-learning models commonly used in brain-age prediction. Individual-level age
prediction showed variability in prediction accuracy (Figure , similar to what has been
previously reported for voxel-level analysis and using CAT and FSL-based pipelines [30].
Our age-prediction accuracy for CAT and fMRIPrep-FSL are comparable to previous re-
ports, considering our dataset size and the wide age range [87, 88]. To establish whether
the differences in the pipelines are systematic, we performed classification analysis. The
near-perfect classification performance in the prediction of pipelines (Figure provides
evidence for systematically distinct outcomes of the pipelines, which could be learned by the
machine-learning algorithm and is in line with previous research [26] 32, 34]. Importantly,
removing overall GMV differences by standardizing each feature vector also provided sim-
ilarly high accuracy. Based on these results, even though the pipelines differ in seemingly
trivial ways, such as using different templates or segmentation algorithm, we can conclude
that they produce diverging GMV patterns.

Taken together, these results suggest that combining data processed with different pipelines
might not be fruitful. Data harmonization methods [89, 90], although designed for tackling
cross-site differences, can also be explored to eliminate cross-pipeline differences. To this

23



509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

end, we performed two preliminary analyses. First, we harmonized data across all the 10
pipelines and performed pipeline prediction analysis similar to The pipelines could
not be predicted with high accuracy after harmonization, however we also observed a bias
towards specific pipelines (Supplementary Material Figure . Second, we harmonized
the three datasets processed with three different pipelines and performed leave-one-site-out
age prediction analysis similar to section . This resulted in a higher MAE (MAE=8.5
using a GPR model, Supplementary Material Table compared to when using a single
preprocessing pipeline (MAE=6.29-8.36 using a GPR model, Table . In addition, we
would like to note that harmonization can perform better when the biological variance of
interest is explicitly preserved, such as age as the target in age prediction analysis. However,
this means that the target value must be also available for the test data. This setup leads
to data leakage when performing CV and cannot be applied on real test data, considering
also that data from the test site or pipeline is needed for learning a harmonization model (in
our analysis we harmonized all the data together). Thus, in its current form this approach
is not suitable for ML applications. These results suggest that applying data harmonization
methods in this context is challenging and needs further investigation.

The low to moderate identification performance and its variability across pipelines suggest
that individual-level characteristics are, to a certain degree, captured differently by different
pipelines (Figure [2). This result has important implications for data sharing and privacy
issues [91]. As we show, with regionwise GMV data it is difficult to identify subjects when
processed with different pipelines. Thus, when sharing such data, for instance, to perform
multicenter analysis, it is important to keep the VBM pipeline consistent, including the
template used.

Univariate analysis showed limited ROI-level similarity across pipelines, with an average
regional similarity of » = 0.51 for pipelines using a general template. FSLVBM (using BET)
and fMRIPrep-FSL (using ANTSs brain extraction) showed high similarity, especially when a
data-template was used (average r = 0.76) (Figure[5|(c)). When using the general template,
the average similarity decreased but remained relatively high (r = 0.67). This suggests that
differences in brain extraction are overshadowed by the subsequent steps. ANTs-FSL and
fMRIPrep-FSL pipelines that differ mainly in segmentation (and the a priori template in
brain extraction) showed relatively high agreement (r = 0.67 general template; r = 0.68
data-template), although slightly lower than what we show for brain extraction (Figure

(b))-

Differences between registration algorithms have been reported [4I]. Our results are in
line with this previous report. The registration step, evaluated as a comparison between
ANTs and ANTs-FSL, had medium-to-high impact, with average agreement between these
pipelines ranging across datasets, from r = 0.48 to r = 0.53 and r = 0.57 to r = 0.6 for
general and data-template, respectively (Figure 5| (a)).

The impact of using different registration templates, general template versus data-template,
was examined using pipelines that differ only in the template. This resulted in a wide-ranging
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agreement from r = 0.59 to r = 0.92 (Table . ANTs and CAT create data-templates
that are very similar to their respective general templates — likely due to their exhaustive
registration algorithms and the iterative processes together with the fact that their template
creation processes are initialized with a general template. Overall, the differences in data-
template creation algorithms and the ensuing data-templates led to substantial differences
across the tools. This is in agreement with previous research reporting a small impact of the
template when using CAT [35]. Effectively, using a data-template imposes higher similarity
between the subjects’ images, which we also observed for some pipelines (Figure [4f). Despite
this high similarity, machine-learning-based analysis could reliably distinguish the pipelines.
Univariate analysis of regionwise GMV-age correlations as well as age prediction were in
favor of using a general template. Using subjects’ data to create a data-template and then
registering the same subjects to it is a circular process unless an independent subset is used
for template creation; however, given the limited data, this is often hard to implement in
practice. The latter, in combination with the high computational demands of the template-
creation process, are in favor of using a general template.

Although ANTs and CAT share no common modules, they showed medium to high simi-
larity (for all data sets ranged from r = 0.65 to r = 0.72; maximum was for r = 0.74 for
the eNKI). According to the impact of individual steps in the final GMV, as shown in our
pipeline comparison, CAT and ANTs are expected to yield differing GMV estimates unless
there are similarities in their internal algorithmic mechanism, which seems to be the case.
In fact, exhaustive registration to similar templates can lead to similar outcomes. ANTs-
FSL with the general template and CAT (both templates) showed the lowest regionwise
similarity across datasets. However, in our opinion, the low similarity between CAT, with
either template, and FSLVBM using a general template needs special attention (Figure
and Supplementary Material, eNKI Figure , CamCAN Figure and IXI Figure .
The reason is that they are both off-the-shelf pipelines and widely used in VBM projects.
Regionally, the highest differences were present in the frontal lobe, superior parietal lobule
and subcortical regions, specifically with regards to their association to age (Supplemen-
tary Material Figures|S.15]|S.16}|S.17} [S.18]) Such differences enhance the risk of emanating
different or even sometimes contradictory conclusions. From the projection of similarities
between pipelines in the brain (Supplementary Material nifti files), it appears that high cor-
relation values are not located in specific regions, nor is a specific pattern formed. However,
segmentation and brain extraction seem to affect stronger subcortical and cerebellar areas
and the superior frontal and occipital lobes. When comparing the registrations of ANTs and
FNIRT, widespread differences appear in cortical areas and in the cerebellum (Figure [5( (b)).

The identification results (Figure [2)) were very similar to the pairwise similarity estimated
using Pearson’s correlation (Figure {4)). The agreement between the two methods was high
(Pearson’s correlation between pairwise similarity and Idiff, » = 0.84), and when using
general templates, identification and univariate analysis were almost the same (r = 0.955,
Supplementary Material Figure . This agreement between two different methods to
assess similarity between the pipelines provides confirmatory validity to our findings.
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It is important to note that, mostly for brain extraction but also for segmentation and
registration algorithms, there are important differences between the datasets (Figure [5)).
This indicates that properties such as the intensity range of the images can influence the
results in different ways, e.g., the quality of segmentation varies across different scanning
parameters [92-04].

By using three large datasets, we aimed to cover a wide range of MRI vendors as well as
scanning parameters and settings. Different scanners were used not only across datasets but
also within the same dataset, strengthening our results and conclusions independent of the
datasets’ idiosyncrasies.

The fMRIPrep-FSL combination showed the second highest correlation with age and the best
brain-age predictions. This is not surprising given the nonexhaustive registration of FSL,
which together with deep neural networks provides accurate brain-age prediction [25]. It is
noteworthy that we used all subjects from the eNKI sample without separating the healthy
part of the cohort as is usually done. When inspecting the age predictions of only healthy
subjects, in intrasite predictions, and a mix of healthy and nonhealthy subjects, cross-site,
separately, we did not observe a significant difference (see Supplementary Material Table
and Table . This can be explained by the fact that the nonlinear transformations
wipe-out small differences compared to linear registration but also by the fact that the
templates we used are based on healthy populations. In the age-prediction CAT showed
performance similar to fMRIPrep-FSL but lower than what has been previously reported [17].
However, this difference can be driven by the machine-learning algorithms and the feature
space employed. These results are in line with the univariate analysis we performed, where
the same two pipelines had the highest (anti-) correlation with age (Figure [6]). In addition,
fewer ROIs showed a positive correlation with age for CAT and fMRIPrep-FSL than for other
pipelines, which is in line with known GM atrophy with age [95-07]. Taken together, our
results are in favor of CAT and fMRIPrep-FSL in regard to aging-related studies. Although
some recent brain-age applications have shown that linear registration is preferable [16] 25],
we decided to compare the whole VBM process using nonlinear registration. This choice
was made so that we could approach the topic via a common space, permit the use of a
parcellation atlas and facilitate the interpretability of the results.

The user-centric approach we followed in this project does not allow for an extensive eval-
uation of the potentials of the tools we used. CAT, ANTSs, but to a certain degree also
FSLVBM potentially can be tuned to provide more accurate brain-age predictions or re-
gional associations to age. However, such an investigation is out of the scope of this work.

To summarize, our results show that all steps of a VBM pipeline have a considerable impact
on the GMV estimates, and therefore, different pipelines produce different results. These
differences in GMV estimates are reflected in univariate as well as multivariate analyses. The
choice of registration has the highest impact, followed by segmentation and brain extraction
algorithm. In the specific case of age-prediction, we recommend the combination of ANTs for
brain extraction and FSL for segmentation (as implemented in fMRIPrep) and FSL nonlinear
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registration or CAT 12.8, with the latter having the advantage of being available as an off-
the-shelf pipeline. The option of using a general template is preferred for age-related studies
and likely other studies with a similar set up, especially when analyzing scans from multiple

datasets.
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- MRI acquisition details

. . Time parameters Other parameters
Sample Scanner Sequence Tesla | Slices | Voxel size (mm) (TR / TE / TI [ms]) | (FA/FOV [ °/mm])
Siemens . .
eNKI Magnetom TrioTim 3D MP-RAGE | 3T 176 I1x1x1 1900/2.52/900 9/250x250
Cam-CAN | Tim Trio Siemens | 3D MP-RAGE | 3.0T | 192 I1x1x1 2,250/2.99,/900 9/256 x 256
IXI-Guys | Phillips 3D MP-RAGE | 15T | 102 | 12x094x094 | 0.813/4.603/ 8/256 x 256
IXI-HH Discovery GE 3D FSPGR 3T 176 1.2 x0.94 x 0.94 9.6/4.6/450 N/A /256 x 256
IXIIOP | GB N/A 15 |N/A |12x094x094 |N/A N/JA /256 x 256
Table S.1: MRI acquisition details for the three datasets.
- Preprocessing

All pipelines were run in a high-throughput compute cluster except CAT12.8, which was run
in a high-performance computing cluster.

- Study specific templates of each pipeline

The templates created by CAT and ANTs appear to be sharper than those created by FS-
LVBM. For ANTSs, the template was 197x233x189; for CAT 175x199x175; and for FSL-based
pipelines, 91x109x91. Templates built with eNKI are presented in Figure[S.I] templates built
based on CamCAN subjects can be found in Figure and for IXI in Figure[S.3




NKI

ANTs+FSL fMRIprep+FSL FSLVBM

Figure S.1: Templates created for each pipeline. Default CAT and ANTs processes created
sharper templates.

CamCAN

ANTs+FSL fMRIprep+FSL

Figure S.2: Templates created for each pipeline CamCAN dataset.



991

992

993

994

995

996

997

998

999

1000

1001

ANTs+FSL fMRIprep+FSL

Figure S.3: Templates created for each pipeline for the IXI dataset

- Initialization of ANTs Atropos

It is worth mentioning that to follow our user-centric perspective, we used K-means clustering
to initialize ANTs Atropos segmentation instead of some a-priori probability map. This
resulted in relatively many subjects failing the preprocessing, as tissue samples were assigned
unexpected labels by the K-means algorithm, resulting in confusion between white matter
and gray matter. Although this could be approached by adjusting Atropos, such effort is out
of scope of this project; instead, we performed custom quality control to detect such failed
preprocessing.

- Detailed results of age predictions

Table shows the analytical results of age prediction when models are trained and tested
within each site.



R MAE per model | MAE all models
Pipelines Models all datasets all datasets
RVR 6.9
ANTs GPR 7.04 706
General template | LASSO 7.32 ’
KRR 7.00
RVR 6.93
ANTs GPR 6.93 7.04
Data template LASSO 7.35 ’
KRR 6.95
RVR 6.56
ANTs FSLVBM | GPR 6.34 6.55
General template | LASSO 6.79 ’
KRR 6.52
RVR 6.71
ANTs FSLVBM | GPR 6.46 6.74
Data template LASSO 7.08 ’
KRR 6.71
RVR 5.92
fMRIPrep FSL GPR 5.65 5.83
General template | LASSO 6.15 )
KRR 5.59
RVR 6.14
fMRIPrep FSL GPR 6.01 6.18
Data template LASSO 6.51 )
KRR 6.06
RVR 6.25
FSLVBM GPR 5.93 6.17
General template | LASSO 6.45 )
KRR 6.05
RVR 6.60
FSLVBM GPR 6.30 6.55
Data template LASSO 6.77 )
KRR 6.54
RVR 6.48
CAT 12 GPR 6.26 6.39
General template | LASSO 6.45 )
KRR 6.37
RVR 6.46
CAT 12 GPR 6.19 6.37
Data template LASSO 6.47 )
KRR 6.37

Table S.2: Results of age prediction using a multivariate approach. Four models were tested
in the three datasets in a nested K-fold scheme. The third column contains the averaged
results of the three datasets per model. The last column shows the average of all datasets
and all models for each pipeline.

w2 Table shows the analytical results of age prediction when the models are trained with



w3 two of the datasets and tested with the leftout dataset.



Test Test Test | Mean test Mean test

Pipeline Models eNKI | CamCAN | IXI | (datasets) | (datasets & Pipelines)
RVR 7.39 8.43 | 8.23 8.02
ANTs GPR 7.19 7.94 | 8.27 7.80 7 %6
General template | LASSO 7.08 7.88 | 8.33 7.76 '
KRR 7.40 7.87 | 8.28 7.85
RVR 7.48 8.26 | 7.88 7.87
ANTs GPR 7.80 774 | 7.53 7.69 7 %6
Data template LASSO 7.73 6.88 | 8.99 7.87 '
KRR 7.84 8.12 | 8.03 8.00
RVR 6.96 9.16 | 9.75 8.62
ANTs-FSL GPR 6.85 8.48 | 9.74 8.36 844
General template | LASSO 7.60 797 | 9.88 8.49 '
KRR 6.73 7.91 | 10.28 8.31
RVR 7.12 15.87 | 9.87 10.95
ANTs-FSL GPR 6.95 11.47 | 9.72 9.38 10.07
Data template LASSO 7.51 13.94 | 8.45 9.97 ’
KRR 7.04 13.33 | 9.54 9.97
RVR 6.25 5.8 | 7.47 6.43
FMRIprep-FSL | GPR 6.10 5.63 | 7.13 6.29 6.26
General template | LASSO 6.63 5.62 | 6.36 6.20 '
KRR 6.23 5.33 | 6.82 6.13
RVR 6.83 6.56 | 6.12 6.50
FMRIprep-FSL | GPR 6.61 5.79 | 6.06 6.15 6.21
Data template LASSO 6.66 5.76 | 5.91 6.11 '
KRR 6.48 5.80 | 5.82 6.06
RVR 6.62 6.02 | 8.66 7.10
FSLVBM GPR 6.67 5.83 | 7.08 6.52 6.77
General template | LASSO 7.23 6.09 | 6.88 6.73 ’
KRR 6.43 5.77 | 8.00 6.73
RVR 11.28 10.67 | 7.63 9.92
FSLVBM GPR 11.42 10.66 | 6.70 9.55 9.36
Data template LASSO 10.95 9.82 | 6.69 9.16 '
KRR 11.14 9.78 | 6.74 9.22
RVR 6.75 6.53 | 6.39 6.55
CAT12.8 GPR 6.71 6.88 | 5.88 6.49 6.45
General template | LASSO 6.75 6.62 | 5.92 6.43 '
KRR 6.55 6.58 | 5.82 6.32
RVR 6.83 6.81 | 6.25 6.63
CAT12.8 GPR 7.14 6.53 | 6.02 6.57 6.76
Data template LASSO 7.20 751 | 7.52 7.41 '
KRR 7.01 6.06 | 6.19 6.42

Table S.3: Cross-dataset age prediction results. For each pipeline we trained four models
using two of the datasets and predicted the age of the subjects on the third, left-out dataset.
The optimal parameters for each model were selected using a 5-fold cross validation scheme
in the training datasets. The second to last column contains the mean of each model across
all combinations of the datasets for training and testing for each pipeline. The last column
contains mean across models and dataset combinations for each pipeline.
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- Classifying subjects’ images based on the preprocessing pipeline

We used two methods to scale the features prior to classification, using a linear SVM: i) within
each feature and ii) within each subject, (both with standard scaling). The classification
results were close to perfect using both methods (Figure [S.4)).
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Figure S.4: Confusion matrices of multiclass classification of preprocessed subjects from all
pipelines using the preprocessing pipelines as labels. We tried two methods for scaling the
features aiming at ruling out that the overall intensity differences drive the classification.
We used standard scaling, which standardizes features by removing the mean and scaling
to unit variance, and MinMax scaling, which scales and translates each feature individually
such that it is in the given range on the training set, here between zero and one.



we - Harmonization across pipelines

we  The impact of harmonization across pipelines was also tested. We performed age-prediction
0 and pipeline-prediction as we did for non-harmonized data in and [2.5] Harmonization
o was performed using Neuroharmonize [98]. For age-prediction we selected eNKI processed by
w2  fMRIprep-FSL, IXI processed by FSLVBM and CamCAN processed by CAT 12.8 all with a
w3 general template. Table shows the age-prediction results when each of the three dataset
w4 18 processed by different pipeline and then all data are harmonized.

model Train: eNKI-IXI | Train: eNKI-CamCAN | Train: CamCAN-IXI Average
Test: CamCAN | Test: IXI Test: eNKI

RVR | MAE=10.7 MAE=8.11 MAE=7.9 MAE=8.9

GPR | MAE=10.3 MAE=7.6 MAE=7.5 MAE=8.5

Table S.4: Brain age prediction results for harmonized data. The brain age prediction
process was performed using eNKI processed by fMRIprep-FSL, IXI processed by FSLVBM
and CamCAN processed by CAT 12.8 all with a general template. Data were harmonized
and then used for individuals age prediction with GPR and RVR as in .

s The results of the pipeline classification with harmonized data are shown in Figure [S.5]
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Figure S.5: Classification of pipelines based on harmonized GMV. Harmonization was per-
formed across pipelines and the rest of the process was as in [2

we - Univariate analysis chart

017 Figure illustrates the univariate analysis we followed.
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Figure S.6: Depiction of the process to calculate regional correlations across subjects for a
pipeline pair. For a given pair of pipelines (panels A and B in the figure) for each region, we
calculate the correlation across subjects. By performing this process for all pairs of pipelines
and all regions, we obtain a regional correlation matrix (panel D). The overall agreement
between the pipelines was calculated as the median for each region across all pipeline pairs,
which was then used to correlate with the size of the parcels (panel E). For each pipeline
and each region, we calculated Pearson’s correlation across subjects between regional GMV
(shown here for panel B) and age (panel C'). Regional correlation values between pipelines
(panel D) or with age (panel F) were projected on the brain for visualization purposes.

- Total GMV plots

The following image [S.7] presents the total GMV of all subjects for each pipeline and each
dataset.
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Figure S.7: Total GMV of all subjects for all pipelines and all datasets. Important differences
in the total intensities between all pipelines. Only ANTs-FSL and CAT have similar means.
Not surprisingly, the template appears to have no impact on the total GMV of subjects.
High consistency is observed for the same pipelines across datasets.

- Similarity between pipelines as expressed by the regionwise Pearson’s correlation
across subjects for each pair of pipelines. For CamCAN in Figure and for IXT in [S.10
From the figures of the three datasets, we see that similarities are consistent across datasets.
However, some lack of variability is still identified, most likely due to differences in the quality
of the images among datasets.
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Figure S.8: eNKI: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines

with the highest correlation to age.
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Figure S.9: CamCAN: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines

with the highest correlation to age.
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Figure S.10: IXI: Histograms of Pearson’s R values for all regions across subjects and for all combinations of pipelines.
Niftis represent R values in the brain for the pipelines with Max mean, Min mean and the comparison of the two pipelines
with the highest correlation to age.

ANTs ANTs
general data tmplt general

ANTs FSL

FSLVBM FSLVBM  fMRIprep FSL fMRIprep FSL  ANTs FSL
general data tmplt general data tmplt

data tmplt

CAT12.8
general



1026 Correlations of pipelines that differ only in the template for the three datasets
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Figure S.11: Mean correlation of regions across subjects for all datasets between pipelines
that only differ in the template used for spatial normalization.

1027 The correlation between differential identifiability and Pearson’s correlations
s calculated between pairs of pipelines was examined to assess the agreement between the two
129 methods. The results can be seen in Figure
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Figure S.12: Strong correlations were observed between the two methods we used to assess
similarity between pipelines, the univariate analysis and identification. Especially between
the pipelines using the general template, the correlation was r = 0.955. For pipelines using
data-templates, the correlation was r = 0.8. The correlation for all pipeline pairs was
r = 0.841. All correlations had p < 0.05.

Age-ROlIs correlations for all pipelines in Figure
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Figure S.13: Correlation between regions and age of subjects for all pipelines.

Table ANOVA results for correlation values between ROIs and age for all pipelines

w2 across subjects of all datasets. Figure depicts the same correlation values between all
033 regions and age calculated across subjects of all datasets, per pipeline.

Dataset F score p-value

eNKI 209.99 | 4.18E-193 <0.05
CamCAN | 400.45 | 5.11E-156 <0.05
IXI 637.771 | 5.18E-234 <0.05
All data 324.468 | 5.18E-234 <0.05

Table S.5: One-way ANOVA for the three datasets was performed for the three pipelines
that used general templates and had the highest overall correlation to age.
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Figure S.14: ROI-age correlations for all pipelines and all datasets. One-way ANOVA showed
that there were significant differences between pipelines in ROI-Age correlations.

Scatter plots for each pipeline demonstrate the size of each ROI on the x-axis and the
Pearson’s r value between ROI and age calculated across subjects. The first figure (Figure

S.21)) is for the CamCAN dataset, and Figure is for IXI.
Paired comparisons of ROI-Age correlation values between pipelines

Figure[S.15|shows pairplots of age-region correlations across subjects for all data, and Figures
[S.16], [S.17 and [S.1§] show for eNKI, CamCAM and IXI, respectively.
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The effect of region size

- Association between the overall similarity among the pipelines (calculated as the median
of agreement between pairs) and parcel sizes

ROl size - Pearson’s r
All data eNKI| CamCAN IXI
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Figure S.19: Median values from all pairs of pipelines of Pearson’s r correlations across
subjects for all regions plotted against the size of the regions. A nonsignificant correlation
was found for the eNKI dataset, and very low correlations were found for the other two
datasets.

-The association between the size of regions and the corresponding ROI-age correlation
values. CAT appears to have a higher association between the size of each ROI and the
correspondence correlation value with age for eNKI (r=-0.128 for both templates) and Cam-
CAN. ANTSs had similar values but only for the eNKI dataset (=r=-0.121 for general template
and -0.125 for data template). For the IXI dataset, FSLVBM with the general template had
the highest values (r=0.102). Notably, FSLVBM had a positive correlation when ANTs and
CAT had negative values. Figure provides the same analysis when data from all the
datasets are combined.
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Figure S.20: Scatter plots with the y-axis representing regional correlation to age and the x-
axis representing the size of the corresponding ROI, for all pipelines estimated in all datasets.
For each pipeline, we estimated the Pearson’s r and p values. Red lines represent the linear

regression line.
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Figure S.21: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the eNKI
dataset. For each pipeline, we estimated the Pearson’s r and p values. Red lines represent

the linear regression line.
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Figure S.22: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the Cam-

CAN dataset.

For each pipeline, we estimated the Pearson’s r and p values.
represent the linear regression line.
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Figure S.23: Scatter plots with the y-axis representing regional correlation to age and the
x-axis representing the size of the corresponding ROI for all pipelines estimated in the IXI
dataset. For each pipeline, we estimated the Pearson’s r and p values. Red lines represent
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