001010402 001__ 1010402
001010402 005__ 20230929112544.0
001010402 0247_ $$2doi$$a10.21105/joss.05364
001010402 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03042
001010402 037__ $$aFZJ-2023-03042
001010402 041__ $$aEnglish
001010402 082__ $$a004
001010402 1001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b0$$eCorresponding author$$ufzj
001010402 245__ $$aQAOA.jl: Toolkit for the Quantum and Mean-Field Approximate Optimization Algorithms
001010402 260__ $$a[Erscheinungsort nicht ermittelbar]$$b[Verlag nicht ermittelbar]$$c2023
001010402 3367_ $$2DRIVER$$aarticle
001010402 3367_ $$2DataCite$$aOutput Types/Journal article
001010402 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692591459_2431
001010402 3367_ $$2BibTeX$$aARTICLE
001010402 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010402 3367_ $$00$$2EndNote$$aJournal Article
001010402 520__ $$aQuantum algorithms are an area of intensive research thanks to their potential for speedingup certain specific tasks exponentially. However, for the time being, high error rates on theexisting hardware realizations preclude the application of many algorithms that are basedon the assumption of fault-tolerant quantum computation. On such noisy intermediate-scale quantum (NISQ) devices (Preskill, 2018), the exploration of the potential of heuristicquantum algorithms has attracted much interest. A leading candidate for solving combinatorialoptimization problems is the so-called Quantum Approximate Optimization Algorithm (QAOA)(Farhi et al., 2014).QAOA.jl is a Julia package (Bezanson et al., 2017) that implements the mean-field Ap-proximate Optimization Algorithm (mean-field AOA) (Misra-Spieldenner et al., 2023) - aquantum-inspired classical algorithm derived from the QAOA via the mean-field approximation.This novel algorithm is useful in assisting the search for quantum advantage by providing atool to discriminate (combinatorial) optimization problems that can be solved classically fromthose that cannot. Note that QAOA.jl has already been used during the research leading toMisra-Spieldenner et al. (2023).Additionally, QAOA.jl also implements the QAOA efficiently to support the extensive classicalsimulations typically required in research on the topic. The corresponding parameterizedcircuits are based on Yao.jl (Luo et al., 2020, 2023) and Zygote.jl (Innes et al., 2019, 2023),making it both fast and automatically differentiable, thus enabling gradient-based optimization.A number of common optimization problems such as MaxCut, the minimum vertex-coverproblem, the Sherrington-Kirkpatrick model, and the partition problem are pre-implemented tofacilitate scientific benchmarking.
001010402 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001010402 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010402 7001_ $$0P:(DE-Juel1)194613$$aBagrets, Dmitry$$b1$$ufzj
001010402 7001_ $$0P:(DE-Juel1)187545$$aMisra-Spieldenner, Aditi$$b2$$ufzj
001010402 7001_ $$0P:(DE-Juel1)194697$$aStollenwerk, Tobias$$b3$$ufzj
001010402 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b4$$ufzj
001010402 773__ $$0PERI:(DE-600)2891760-1$$a10.21105/joss.05364$$gVol. 8, no. 86, p. 5364 -$$n86$$p5364 -$$tThe journal of open source software$$v8$$x2475-9066$$y2023
001010402 8564_ $$uhttps://juser.fz-juelich.de/record/1010402/files/10.21105.joss.05364.pdf$$yOpenAccess
001010402 909CO $$ooai:juser.fz-juelich.de:1010402$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b0$$kFZJ
001010402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194613$$aForschungszentrum Jülich$$b1$$kFZJ
001010402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187545$$aForschungszentrum Jülich$$b2$$kFZJ
001010402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194697$$aForschungszentrum Jülich$$b3$$kFZJ
001010402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b4$$kFZJ
001010402 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001010402 9141_ $$y2023
001010402 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010402 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010402 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001010402 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T15:37:00Z
001010402 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T15:37:00Z
001010402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2023-05-02T15:37:00Z
001010402 920__ $$lyes
001010402 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001010402 980__ $$ajournal
001010402 980__ $$aVDB
001010402 980__ $$aUNRESTRICTED
001010402 980__ $$aI:(DE-Juel1)PGI-12-20200716
001010402 9801_ $$aFullTexts