001     1010402
005     20230929112544.0
024 7 _ |a 10.21105/joss.05364
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03042
|2 datacite_doi
037 _ _ |a FZJ-2023-03042
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Bode, Tim
|0 P:(DE-Juel1)195623
|b 0
|e Corresponding author
|u fzj
245 _ _ |a QAOA.jl: Toolkit for the Quantum and Mean-Field Approximate Optimization Algorithms
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2023
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692591459_2431
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantum algorithms are an area of intensive research thanks to their potential for speedingup certain specific tasks exponentially. However, for the time being, high error rates on theexisting hardware realizations preclude the application of many algorithms that are basedon the assumption of fault-tolerant quantum computation. On such noisy intermediate-scale quantum (NISQ) devices (Preskill, 2018), the exploration of the potential of heuristicquantum algorithms has attracted much interest. A leading candidate for solving combinatorialoptimization problems is the so-called Quantum Approximate Optimization Algorithm (QAOA)(Farhi et al., 2014).QAOA.jl is a Julia package (Bezanson et al., 2017) that implements the mean-field Ap-proximate Optimization Algorithm (mean-field AOA) (Misra-Spieldenner et al., 2023) - aquantum-inspired classical algorithm derived from the QAOA via the mean-field approximation.This novel algorithm is useful in assisting the search for quantum advantage by providing atool to discriminate (combinatorial) optimization problems that can be solved classically fromthose that cannot. Note that QAOA.jl has already been used during the research leading toMisra-Spieldenner et al. (2023).Additionally, QAOA.jl also implements the QAOA efficiently to support the extensive classicalsimulations typically required in research on the topic. The corresponding parameterizedcircuits are based on Yao.jl (Luo et al., 2020, 2023) and Zygote.jl (Innes et al., 2019, 2023),making it both fast and automatically differentiable, thus enabling gradient-based optimization.A number of common optimization problems such as MaxCut, the minimum vertex-coverproblem, the Sherrington-Kirkpatrick model, and the partition problem are pre-implemented tofacilitate scientific benchmarking.
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bagrets, Dmitry
|0 P:(DE-Juel1)194613
|b 1
|u fzj
700 1 _ |a Misra-Spieldenner, Aditi
|0 P:(DE-Juel1)187545
|b 2
|u fzj
700 1 _ |a Stollenwerk, Tobias
|0 P:(DE-Juel1)194697
|b 3
|u fzj
700 1 _ |a Wilhelm-Mauch, Frank
|0 P:(DE-Juel1)184630
|b 4
|u fzj
773 _ _ |a 10.21105/joss.05364
|g Vol. 8, no. 86, p. 5364 -
|0 PERI:(DE-600)2891760-1
|n 86
|p 5364 -
|t The journal of open source software
|v 8
|y 2023
|x 2475-9066
856 4 _ |u https://juser.fz-juelich.de/record/1010402/files/10.21105.joss.05364.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010402
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194613
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184630
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T15:37:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T15:37:00Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2023-05-02T15:37:00Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21