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MethodsIntroduction
• Healthy aging is associated with structural and functional 

changes in brain networks associated with executive 
functioning (EF)

• Despite a known association between resting-state functional 
connectivity (RSFC) and EF [1], its potential as a marker for 
individual differences in EF performance has been 
questioned [2]

• Therefore, we examined to what degree individual EF abilities
in low-demand (LD) and high-demand (HD) task conditions can 
be predicted from different brain metrics: RSFC, gray-matter 
volume (GMV), regional homogeneity (ReHo), and fractional 
amplitude of low frequency fluctuations (fALFF) from an EF-
related and EF-unrelated brain networks

Results

Discussion
• The overall low to moderate prediction accuracies together with the missing network specificity across modalities

question the utility of the brain metrics examined as biomarkers for individual differences in EF performance
• However, our results point out a superiority of GMV and fALFF compared to ReHo and RSFC – possibly, because these

metrics are less susceptible to state effects (e.g., mind wandering, thinking about a task) [7]
• In particular, structural measures of overall atrophy might be more informative in older adults, while functional measures of
brain variability [8] might contain more information of individual differences in EF performance in younger adults

• Our results stress the need for adaptive behavioral testing in order to capture meaningful brain–behavior associations as
prediction accuracies in LD (vs. HD) task conditions were better for older and in HD (vs. LD) conditions for younger adults
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ANOVA Main Effects
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Conclusions:
Ø Still a long way to go to identify practically 

useful brain-based biomarkers of EF abilities
Ø Global properties of the brain might contain 

more information about individual differences 
in EF abilities

Ø Our results stress the need for adaptive 
behavioral testing (age × task demand)
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All main and interaction effects sig. (p < .00005, Bonferroni-adjusted for the 10 × 100 cross-validation scheme)
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3. Within-network brain features
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5. Prediction

Algorithm: Partial Least Squares
100 × 10-fold cross validation

6. Comparing prediction accuracies
2(age) × 3(network) × 2(task-demand) 

× 4(modalities) 

mixed-measures ANOVA

Research Questions:
Ø Does one of the metrics outperform the others in 

predicting EF?
Ø Does this pattern change depending on network, task-

demand, or age group?
Ø Do young and old adults differ in their predictability 

depending on metric, network, or task-demand level?


