001     1010405
005     20230905204623.0
024 7 _ |a 10.34734/FZJ-2023-03045
|2 datacite_doi
037 _ _ |a FZJ-2023-03045
041 _ _ |a English
100 1 _ |a Hamdan, Sami
|0 P:(DE-Juel1)184874
|b 0
|e Corresponding author
111 2 _ |a Organization for Human Brain Mapping (OHBM)
|c Montreal
|d 2023-07-22 - 2023-07-26
|w Canada
245 _ _ |a Cofound-Leakage: Confound Removal In Machine Learning Leads To Leakage
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1693893044_16257
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a Acknowledgments: This work was partly supported by the Helmholtz-AI project DeGen, the Helmholtz Portfolio Theme ‘Supercomputing and Modeling for the Human Brain’ and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Poster: Pitfalls of Confound Regression in Machine Learning. Der Postertitel lautet anders, doch das war ok fuer OHBM Veranstalter
520 _ _ |a Modern Machine Learning (ML) approaches are now regularly employed forindividual-level prediction, e.g. personalized medicine.Particularly in such critical-decision making, it is of utmost importance to not onlyachieve high accuracy but also to trust that models rely on actual features-targetrelationships [1, 2]. To this end, it is crucial to consider confounding variables as theycan obstruct the features-target relationship. For instance, a researcher might wantto identify a biomarker showing high classification accuracy between controls andpatients. However, the model might have just learned simpler confounders like ageor sex as a good proxy of the disease [3]. To counteract such unwanted confoundingeffects, investigators often use linear models to remove confounding variables fromeach feature separately before employing ML. While this confound regression (CR)approach is popular [4], its pitfalls, especially when paired with non-linear MLmodels, are not well understood.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 1
700 1 _ |a Love, Bradley C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Polier, Georg von
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Weis, Susanne
|0 P:(DE-Juel1)172811
|b 3
|u fzj
700 1 _ |a Schwender, Holger
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 5
|u fzj
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 6
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1010405/files/SamiHamdanOHBM.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010405
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184874
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)184874
910 1 _ |a University College London
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172811
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)172811
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21