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Introduction

Pipeline to measure Performance ML Algorithms used:

Analyzing performance of 10 benchmark data sets. LR: Linear/Logistic Regression
Confounds were either TaCo or simulated.
All comparisons were based on this structure:

Not dealing with confounding can threaten the interpretability &
meaningfulness of machine learning (ML) models.

This can lead to: untrustworthy predictions & questionable insights.! DT: Decision Tree
Therefore, researchers often remove them using Confound RF: Random Forest

Regression (CR). oot MLP: Multilayered Perceptron
Typical Confound: ata
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Target as a Confound (TaCo):
TaCo shares all variance any confound could share with features &

the target. Therefore, the TaCo represents the most extreme case of X — x— x—>N=h
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Results
Performance after CR increases before applying non-linear ML Possible mechanisms for confound-leakage
S Imbalance in distributions CR leaks information
Raw B CR conditioned on confound: ——_ when using low precision features:
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Or revealing real information? Here: Only leakage possible
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CR increases information usable by (here non-linear) ML models inside of the features. é* 2092- = 6 0.2 => performance 1
=> Danger for interpretability & meaningfulness of all CR-ML workflows o L3s0s- => feature importance
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Discussion
Summary Recommendations CR-ML Workflows Limitations

We show confound-leakage in 1) Check performance without CR No full-proof method for

* Benchmark data If CR-ML higher proceed. detection & elimination of confound leakage.

* Simulations 2) Assess confounding strength

 Medical data Stronger confounds to target relationship Several complex combinations of:

pose greater danger of confound-leakage. * Features

We found possible mechanisms 3) Gain evidence for/against confound-leakage * Target

* Imbalance In distributions conditioned on confound TaCo + shuffling of features » Confounds

* low precision features 4) Carefully choose alternatives could lead to confound-leakage

other procedures may also entail unknown pitfalls.
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