001010421 001__ 1010421 001010421 005__ 20231027114412.0 001010421 0247_ $$2doi$$a10.1093/noajnl/vdac113 001010421 0247_ $$2ISSN$$a2632-2498 001010421 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03047 001010421 0247_ $$2pmid$$a37287577 001010421 0247_ $$2WOS$$aWOS:001015077100009 001010421 037__ $$aFZJ-2023-03047 001010421 082__ $$a610 001010421 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author 001010421 245__ $$aAdvances in PET imaging for meningioma patients 001010421 260__ $$aOxford$$bOxford University Press$$c2023 001010421 3367_ $$2DRIVER$$aarticle 001010421 3367_ $$2DataCite$$aOutput Types/Journal article 001010421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1694411431_20104 001010421 3367_ $$2BibTeX$$aARTICLE 001010421 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001010421 3367_ $$00$$2EndNote$$aJournal Article 001010421 520__ $$aIn patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation—especially at the skull base, in the case of trans-osseus growth, and in tumors with complex geometry—and the differentiation of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help to characterize specific metabolic and cellular features providing additional information beyond the information derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing. This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients with meningioma. 001010421 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001010421 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001010421 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie L$$b1 001010421 7001_ $$0P:(DE-Juel1)190394$$aWollring, Michael$$b2 001010421 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b3 001010421 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b4 001010421 7001_ $$0P:(DE-HGF)0$$aVillanueva-Meyer, Javier E$$b5 001010421 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b6 001010421 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7 001010421 7001_ $$0P:(DE-HGF)0$$aTonn, Joerg-Christian$$b8 001010421 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdac113$$gVol. 5, no. Supplement_1, p. i84 - i93$$nSupplement_1$$pi84 - i93$$tNeuro-oncology advances$$v5$$x2632-2498$$y2023 001010421 8564_ $$uhttps://juser.fz-juelich.de/record/1010421/files/Invoice_E15410873.pdf 001010421 8564_ $$uhttps://juser.fz-juelich.de/record/1010421/files/vdac113.pdf$$yOpenAccess 001010421 909CO $$ooai:juser.fz-juelich.de:1010421$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ 001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190394$$aForschungszentrum Jülich$$b2$$kFZJ 001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b4$$kFZJ 001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ 001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ 001010421 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001010421 9141_ $$y2023 001010421 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 001010421 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12 001010421 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001010421 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12 001010421 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-11-23T11:49:35Z 001010421 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-11-23T11:49:35Z 001010421 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-11-23T11:49:35Z 001010421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOL ADV : 2022$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27 001010421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27 001010421 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 001010421 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1 001010421 980__ $$ajournal 001010421 980__ $$aVDB 001010421 980__ $$aI:(DE-Juel1)INM-4-20090406 001010421 980__ $$aI:(DE-Juel1)INM-3-20090406 001010421 980__ $$aUNRESTRICTED 001010421 9801_ $$aFullTexts