001010421 001__ 1010421
001010421 005__ 20231027114412.0
001010421 0247_ $$2doi$$a10.1093/noajnl/vdac113
001010421 0247_ $$2ISSN$$a2632-2498
001010421 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03047
001010421 0247_ $$2pmid$$a37287577
001010421 0247_ $$2WOS$$aWOS:001015077100009
001010421 037__ $$aFZJ-2023-03047
001010421 082__ $$a610
001010421 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author
001010421 245__ $$aAdvances in PET imaging for meningioma patients
001010421 260__ $$aOxford$$bOxford University Press$$c2023
001010421 3367_ $$2DRIVER$$aarticle
001010421 3367_ $$2DataCite$$aOutput Types/Journal article
001010421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1694411431_20104
001010421 3367_ $$2BibTeX$$aARTICLE
001010421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010421 3367_ $$00$$2EndNote$$aJournal Article
001010421 520__ $$aIn patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation—especially at the skull base, in the case of trans-osseus growth, and in tumors with complex geometry—and the differentiation of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help to characterize specific metabolic and cellular features providing additional information beyond the information derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing. This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients with meningioma.
001010421 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001010421 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010421 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie L$$b1
001010421 7001_ $$0P:(DE-Juel1)190394$$aWollring, Michael$$b2
001010421 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b3
001010421 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b4
001010421 7001_ $$0P:(DE-HGF)0$$aVillanueva-Meyer, Javier E$$b5
001010421 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b6
001010421 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7
001010421 7001_ $$0P:(DE-HGF)0$$aTonn, Joerg-Christian$$b8
001010421 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdac113$$gVol. 5, no. Supplement_1, p. i84 - i93$$nSupplement_1$$pi84 - i93$$tNeuro-oncology advances$$v5$$x2632-2498$$y2023
001010421 8564_ $$uhttps://juser.fz-juelich.de/record/1010421/files/Invoice_E15410873.pdf
001010421 8564_ $$uhttps://juser.fz-juelich.de/record/1010421/files/vdac113.pdf$$yOpenAccess
001010421 909CO $$ooai:juser.fz-juelich.de:1010421$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ
001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190394$$aForschungszentrum Jülich$$b2$$kFZJ
001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b4$$kFZJ
001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
001010421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ
001010421 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001010421 9141_ $$y2023
001010421 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001010421 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001010421 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010421 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001010421 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-11-23T11:49:35Z
001010421 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-11-23T11:49:35Z
001010421 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-11-23T11:49:35Z
001010421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOL ADV : 2022$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001010421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001010421 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001010421 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
001010421 980__ $$ajournal
001010421 980__ $$aVDB
001010421 980__ $$aI:(DE-Juel1)INM-4-20090406
001010421 980__ $$aI:(DE-Juel1)INM-3-20090406
001010421 980__ $$aUNRESTRICTED
001010421 9801_ $$aFullTexts