001 | 1010421 | ||
005 | 20231027114412.0 | ||
024 | 7 | _ | |a 10.1093/noajnl/vdac113 |2 doi |
024 | 7 | _ | |a 2632-2498 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03047 |2 datacite_doi |
024 | 7 | _ | |a 37287577 |2 pmid |
024 | 7 | _ | |a WOS:001015077100009 |2 WOS |
037 | _ | _ | |a FZJ-2023-03047 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 0 |e Corresponding author |
245 | _ | _ | |a Advances in PET imaging for meningioma patients |
260 | _ | _ | |a Oxford |c 2023 |b Oxford University Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1694411431_20104 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation—especially at the skull base, in the case of trans-osseus growth, and in tumors with complex geometry—and the differentiation of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help to characterize specific metabolic and cellular features providing additional information beyond the information derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing. This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients with meningioma. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Albert, Nathalie L |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wollring, Michael |0 P:(DE-Juel1)190394 |b 2 |
700 | 1 | _ | |a Werner, Jan-Michael |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 4 |
700 | 1 | _ | |a Villanueva-Meyer, Javier E |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Fink, Gereon R |0 P:(DE-Juel1)131720 |b 6 |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 7 |
700 | 1 | _ | |a Tonn, Joerg-Christian |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1093/noajnl/vdac113 |g Vol. 5, no. Supplement_1, p. i84 - i93 |0 PERI:(DE-600)3009682-0 |n Supplement_1 |p i84 - i93 |t Neuro-oncology advances |v 5 |y 2023 |x 2632-2498 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010421/files/Invoice_E15410873.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010421/files/vdac113.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1010421 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)190394 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131777 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-11-23T11:49:35Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURO-ONCOL ADV : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|