001     1010421
005     20231027114412.0
024 7 _ |a 10.1093/noajnl/vdac113
|2 doi
024 7 _ |a 2632-2498
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03047
|2 datacite_doi
024 7 _ |a 37287577
|2 pmid
024 7 _ |a WOS:001015077100009
|2 WOS
037 _ _ |a FZJ-2023-03047
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
245 _ _ |a Advances in PET imaging for meningioma patients
260 _ _ |a Oxford
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694411431_20104
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation—especially at the skull base, in the case of trans-osseus growth, and in tumors with complex geometry—and the differentiation of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help to characterize specific metabolic and cellular features providing additional information beyond the information derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing. This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients with meningioma.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Albert, Nathalie L
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wollring, Michael
|0 P:(DE-Juel1)190394
|b 2
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 4
700 1 _ |a Villanueva-Meyer, Javier E
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 6
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 7
700 1 _ |a Tonn, Joerg-Christian
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1093/noajnl/vdac113
|g Vol. 5, no. Supplement_1, p. i84 - i93
|0 PERI:(DE-600)3009682-0
|n Supplement_1
|p i84 - i93
|t Neuro-oncology advances
|v 5
|y 2023
|x 2632-2498
856 4 _ |u https://juser.fz-juelich.de/record/1010421/files/Invoice_E15410873.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1010421/files/vdac113.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010421
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-11-23T11:49:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-11-23T11:49:35Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-11-23T11:49:35Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21