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Abstract

In patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging
using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation—especially at
the skull base, in the case of trans-osseus growth, and in tumors with complex geometry —and the differentiation
of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help
to characterize specific metabolic and cellular features providing additional information beyond the information
derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing.
This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients

with meningioma.
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Structural contrast-enhanced MRI is indispensable in neuro-
oncology at all stages of the disease, i.e., the initial diagnosis,
resection and radiotherapy planning, and follow-up evalua-
tion, including treatment response and the diagnosis of tumor
relapse. Besides, structural contrast-enhanced MRI is readily
available at relatively low cost and offers outstanding spatial
resolution, particularly at 3T or more.

Notwithstanding, various PET tracers for brain tumor im-
aging provide valuable additional information beyond the in-
formation derived from structural MRL.'-3 In detail, a higher
sensitivity and specificity for detecting neoplastic tissue may
help to solve inconclusive diagnostic situations as well as to
plan tumor resection or radiotherapy. Furthermore, improved
planning of tumor resection and radiotherapy to the tumor’s
true extent may help improve tumor resection while sparing
healthy tissue. Importantly, the possibility to identify early

progression or distinguish treatment-related changes can
avoid either a delay of therapy or else a potentially harmful
and unnecessary overtreatment.

Since these advantages of PET imaging constitute an added
value also for meningiomas, we here summarize the current
advances of PET imaging for the clinical management of me-
ningioma patients.

Imaging of Somatostatin Receptor-
Expression in Meningiomas Using Ligands
Labeled with 58Ga

Owing to the overexpression of somatostatin receptors
(SSTR) in meningiomas,**® radiolabeled SSTR ligands allow
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the visualization of meningiomas using PET. It has been
demonstrated that the SSTR subtype 2 is the most abun-
dant isoform, with pronounced expression in meningioma
tissue.* For PET imaging, SSTR ligands are typically la-
beled with %8Ga, which has a physical half-life of 68 min.
These radiotracers can be produced using a %Ge/%®Ga
radionuclide generator without the need of an on-site
cyclotron unit.

Various SSTR ligands such as %Ga-DOTA-Tyr3-
octreotide (DOTATOC), 68Ga-DOTA-p-Phe1-Tyr3-
octreotate (DOTATATE), or ®Ga-DOTA-I-Nal3-octreotide
(DOTANOC) have been used for the diagnostic evaluation
of meningiomas, either in clinical routine or for research
purposes.” Since several years, SSTR imaging is already
being used to visualize neuroendocrine tumors, which
also express high levels of SSTR.8 Thus, this imaging mo-
dality is widely distributed within the clinical routine of nu-
clear medicine.® The ®8Ga-labeled tracers DOTATATE and
DOTATOC are the most common clinically applied tracers
in patients with meningioma.” These tracers provide an
improved lesion contrast relative to the background due
to a negligible uptake in both osseus structures and the
unaffected brain parenchyma.’®" Of note, the pituitary
gland shows increased physiological uptake serving as in-
ternal positive control, but may also hamper the evalua-
tion of meningioma extent in close proximity to the sellar
region.'?

In clinical practice, the most common indications for PET
imaging using SSTR ligands are the delineation of menin-
gioma extent for treatment planning, the differential diag-
nosis of meningioma-mimicking lesions, and the diagnosis
of meningioma relapse.

Delineation of Meningioma Extent for
Treatment Planning

Cross-sectional structural imaging modalities such as MRI
or CT have constrains in delineating meningiomas, espe-
cially at the skull base, in case of trans-osseus growth, and
in meningiomas with complex geometry.’> More specifi-
cally, in meningiomas located at the skull base (i.e., approx-
imately one-third of cases), it is challenging to delineate
tumor tissue from both normal dura, vascular structures,
and bone due to similar signal intensities and contrast
enhancement on MRI. Besides, in case of trans-osseous
tumor growth it is difficult to precisely define the degree of
infiltration even with bone reconstruction kernel on CT im-
ages."*'® Furthermore, artifacts and calcifications may lead
to equivocal findings on conventional MRI, which may neg-
atively affect the evaluation of meningioma extent.

In comparative studies with neuropathological valida-
tion of imaging findings, DOTATATE PET proved to allow a
more precise delineation of meningioma extent compared
to contrast-enhanced MRI.'%® In addition, in intra-osseous
meningiomas as well as in complex anatomical regions
such as the skull base, orbits, and along dural venous
sinuses, using DOTATATE and DOTATOC PET were supe-
rior to structural MRI in terms of tumor delineation.'216-18

These advantages of SSTR PET in terms of meningioma
delineation are beneficial for radiosurgery or fractionated
radiotherapy planning (Table 1). Several studies suggested
that %8Ga-DOTA-conjugated PET ligands coregistered to
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structural CT and MR imaging provide valuable additional
information in terms of both meningioma extent'6.1%19.20
and the detection of distant or residual meningioma rem-
nants'2-24 for the planning of subsequent therapy in-
cluding radiotherapy. Moreover, it has been demonstrated
that areas without binding of SSTR PET ligands can be
excluded from the radiation field and eloquent structures
such as the optic nerves, optic chiasm, or the pituitary
gland, which helps to spare these organs at risk from un-
necessary radiation exposure.?®> Another study suggested
that the addition of PET imaging including SSTR ligands for
target volume definition in patients with WHO grade | me-
ningioma led to a significantly improved local control.?®

The concept of theranostics, i.e., the combination of
therapeutics and diagnostics, allows the exact application
of radiation to meningiomas. The same PET tracer can be
used for focal radiotherapy by exchanging the frequently
used radionuclide %8Ga for diagnostic PET with B-emitters
such as °°Y or "77Lu. This technique, also called peptide re-
ceptor radionuclide therapy, is primarily of clinical value
when in patients with progressive meningioma after sur-
gery and conventional radiotherapy have failed. More re-
cent studies suggested that this concept is effective in a
subset of patients resulting in improved progression-free
survival (> 6 months).2830 Importantly, peptide receptor
radionuclide therapy is well established in patients with
neuroendocrine tumors,?' therefore widely available and
applicable for meningioma treatment.

Differential Diagnosis of Meningioma

In case of lesions suspicious of meningioma, SSTR PET
imaging can help to overcome diagnostic uncertainties
(Table 2). This is especially important whenever surgical
intervention would only be done for obtaining a histo-
logic diagnosis and non-surgical therapies exist. In case
of contrast-enhancing lesions affecting the optic nerve,
DOTATATE PET has proven to distinguish optic nerve
sheath meningiomas from of non-tumoral lesions, par
tially with neuropathological validation.’?3% In tumors
restricted to the cavernous sinus, radiation is nowadays
considered as a valid treatment option especially in non-
space occupying tumors.” In meningiomas in this partic-
ular region, SSTR PET imaging serves as a tool with high
specificity to both confirm the diagnosis and to delin-
eate the target volume of radiation.?’” Furthermore, dural
brain metastases can be distinguished from meningioma
which might be helpful in patients with a medical history
of cancer.3%37 However, more histology-validated data are
needed to establish reliable thresholds for tracer uptake
in order to avoid diagnostic pitfalls. This is of considerable
clinical relevance because not all meningiomas express
high levels of the SSTR subtype 2. Increased SSTR subtype
2 expression has also been reported in other intracranial
tumors such as brain metastases, medulloblastoma, and
cerebral lymphoma.38-40

Diagnosis of Meningioma Relapse

In case of suspected residual or relapsed meningioma, it
may be challenging to distinguish viable tumor tissue from
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Table 3. Studies using SSTR PET for the diagnosis of meningioma relapse and other indications

Main findings

PET tracer

c
=
1%
()
o
>
©
=]
2
n

References

SSTR PET differentiates residual or recurrent meningioma

from treatment-related changes

DOTATATE

Prospective study, 21 patients with primary or recurrent meningiomas

Rachinger et al."

DOTATATE PET was able to differentiate noninvasively

DOTATATE

Case report in a patient with recurrent spinal meningioma

Slotty et al.*?

between tumor and scar tissue; imaging findings were valid-

ated histologically

SSTR PET correlates significantly with growth rate in WHO

Retrospective study, 23 patients with 64 WHO grade I-lll meningiomas with DOTATATE
grade I-ll meningiomas

aggressive behavior (i.e., trans-osseous growth, multiple meningiomas)

Sommerauer et al.*

post-treatment-related changes or scar tissue by structural
imaging alone, particularly after radiotherapy or several
surgeries. Especially in patients with incomplete menin-
gioma resection, adjuvant radiotherapy is frequently ap-
plied to reduce the risk of relapse.

It has been demonstrated that SSTR PET adds essential
clinical information for the differentiation of meningioma
relapse from posttreatment-related changes (e.g., scars re-
lated to prior treatment), usually presenting as equivocal
radiologic findings on contrast-enhanced MRI'%"4' (Table
3). For example, it has been demonstrated that DOTATATE
PET has superior sensitivity compared to conventional MRI
(90% vs. 79%).°

For patient management, an earlier identification of me-
ningioma patients with increased relapse risk is also of
significance for clinical decision-making. It has been dem-
onstrated that DOTATATE binding in PET correlates signif-
icantly with the growth rate in patients with WHO grade
| and Il meningioma, but is not present in WHO grade lll
anaplastic meningiomas.* Therefore, this technique may
help in selecting an earlier time point for treatment initi-
ation. In that study,*® the majority of patients had either
meningiomas with aggressive behavior (i.e., multiple
meningiomas or with trans-osseus growth) or had con-
current treatment underlining the clinical importance to
further examine patients with untreated and solitary me-
ningioma to evaluate the growth rate in this groupmof pa-
tients using SSTR PET.

Imaging of Somatostatin Receptor-
Expression in Meningiomas Using
Ligands Labeled with 18F

The tracer '8F-SiTATE (also known as '8F-SiFAlin-TATE) is
a novel '8F-labeled SSTR targeting peptide providing high
tumor uptake, excellent image quality, and economic and
logistic advantages of '8F- over %Ga-labeled compounds.
In particular, a cost-intensive %Ge/%®Ga generator is no
longer necessary for tracer radiosynthesis. Furthermore,
the labeling approach of '8F-SiTATE is straightforward and
automated.** An initial report in a meningioma patient sug-
gested that tumor delineation of "8F-SiTATE PET is equiv-
alent to ®Ga-DOTATOC PET but with higher resolution.*®
A similar example is presented in Figure 1. Further studies
in meningioma patients using '8F-SiTATE PET imaging are
warranted.

Imaging of Meningiomas Using PET
Tracers not Targeting Somatostatin
Receptor-Expression

[18F]-2-Fluoro-2-Deoxy-p-Glucose (FDG)

FDG is the most widely used PET tracer and it has
also been the most commonly used in meningiomas
to date.*® The uptake of FDG into tissue reflects both
transport and phosphorylation of glucose by viable
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cells.*The increased FDG uptake in tumor tissue is
caused by a high energy demand leading to an in-
creased glycolysis.*®4% A recent meta-analysis analyzed
the use of FDG PET in meningiomas.*® The authors re-
ported that after pooling the data of 302 patients from
13 studies, FDG PET seems useful to differentiate
noninvasively benign (WHO grade ) from atypical
(WHO grade Il) or anaplastic meningiomas (WHO grade
[11).46 It was concluded that for patients in whom an atyp-
ical or anaplastic tumor is suspected because of rapidly
progressive growth with neurological deficits and the
resection is expected to be difficult, FDG PET could be
useful in the preoperative planning.

A threshold of 1.05 of the tumor-to-gray matter ratio
of FDG uptake has been recommended in primary
meningiomas for differentiating WHO grade | from WHO
grade Il or Il meningiomas and a ratio of 0.85 in tumor re-
lapses.These ratios yielded a specificity of 88% and a nega-
tive predictive value of 98%.%° Specificity increased to 96%
in patients who had fastened overnight before the PET was
performed.

However, FDG PET is of limited value in detecting and
delineating meningiomas because the tumors are prima-
rily slow-growing, and their glucose metabolism might be
low.*-%1 Furthermore, the normal brain tissue shows high
FDG uptake leading to a low tumor-to-background con-
trast.52 Another limitation of FDG PET is the fact that tracer
uptake is not tumor-specific, and uptake may also be in-
creased in inflammatory tissue.?2 While FDG PET is there-
fore rarely used for the investigation of meningiomas,
whole-body FDG PET may serve as a useful screening

CT
soft tissue

[18F]SITATE
PET/CT

[63Ga]DOTATOC
PET/CT
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tool for extracranial meningioma metastases in select
patients.53

Radiolabeled Amino Acids

Unlike FDG, radiolabeled amino acids offer a better tumor-
to-background contrast because of lower tracer uptake
in the normal brain tissue.®® The uptake of amino acid
tracers such as O-(2-['"®F]fluoroethyl)-L-tyrosine (FET), ["'C]
methyl-.-methionine (MET), and 3,4-dihydroxy-6-["8F]
fluoro-L-phenylalanine (FDOPA) is mediated by the L-amino
acid transporter system, and increased uptake is also fre-
quently seen in slow-growing tumors such as low-grade
gliomas®-% and meningiomas.®% FET, MET and FDOPA
are widely used for glioma imaging and recurrent brain
metastases and part of routine diagnostics in many cen-
ters."? A correlation of MET uptake with proliferative ac-
tivity in meningiomas has been reported,®® but there is
some controversy concerning its role for noninvasive me-
ningioma grading.%'%2 For FET PET, a more recent study
observed that static and dynamic FET parameters might
provide additional information for noninvasive grading of
meningiomas.%® Since FET does not accumulate in the pitu-
itary gland in contrast to MET and SSTR ligands, it may be
helpful to differentiate intrasellar meningioma invasion.®3
Studies in meningiomas using MET or FET PET re-
ported differences in tumor size compared to MRI, which,
however, were not confirmed histologically.586465 Some
authors integrated MET PET in radiation treatment plan-
ning in meningiomas® and reported a significant influ-
ence on target volume definition. In patients with skull

PET/CT
fused

Figure 1. '®F-SiTATE (top row) and %8Ga-DOTATATE PET/CT (bottom row) of a patient after resection of a WHO grade | sphenoid wing meningioma
show residual tumor laterally located to the right orbit. Visually, tumoral uptake on '8F-SiTATE was highly comparable to %Ga-DOTATATE PET/CT.
Note the lower spatial resolution of the %Ga-labeled peptide DOTATATE compared to '®F-SiTATE PET.
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base meningioma treated with fractionated radiotherapy,
the addition of MET PET changed the target volumes in
the most patients.’® MET PET detected tumor areas, that
were not visible on CT or MRI, which increased the target
volume by approximately 9%. Moreover, areas without
tumor infiltration were identified and excluded from the
target volume. Furthermore, anatomical structures at risk
such as the optic nerves, optic chiasm, or pituitary gland
could be better considered in radiation planning.58

In summary, amino acid PET offers some advantages in
meningioma imaging compared with FDG PET, but com-
pared with SSTR ligands, its use is limited.

3’-Deoxy-3’-[1®F]-Fluorothymidine

The radiolabeled pyrimidine analogue 3’-deoxy-3'-['8F]-
fluorothymidine (FLT) allows noninvasively evaluating pro-
liferative tumor activity.5768 FLT is trapped intra-cellularly
after being phosphorylated by the cytoplasmatic enzyme
thymidine kinase-1 that is expressed during cell prolifera-
tion.®®70 For glioma imaging, the diagnostic use of FLT is
limited due to the presence of a disrupted blood-brain bar-
rier for tracer uptake.”"72Therefore, FLT PET is clinically not
valuable in detecting and delineating brain tumors such as
WHO CNS grade 2 gliomas, which usually show no con-
trast enhancement. In addition, a meta-analysis showed no
superiority of FLT compared to FDG for the diagnosis of
glioma relapse.’374

Two studies by Bashir and colleagues have investigated
FLT PET in patients with meningioma in recent years. In
the first study, static and dynamic FLT PET parameters of
17 patients with meningioma were correlated with cellular
biomarkers of proliferation and angiogenesis.”® FLT PET
parameters differentiated WHO grade | from WHO grade Il
meningiomas with a high accuracy of 99%, showed a sig-
nificant correlation with important biomarkers of prolif-
eration such as the Ki-67 index, and identified aggressive
meningiomas with a high accuracy of 80%.7° Subsequently,
the value of FLT PET for the prediction of tumor progres-
sion in 46 patients with asymptomatic meningioma was
evaluated.” Prediction of patients with an early menin-
gioma progression was achieved with a diagnostic accu-
racy of 78%, indicating that this technique might be helpful
in the selection of high-risk meningioma patients already
after initial diagnosis.”®

Other PET Tracers

"C- or '8F-labeled choline is a radiotracer to detect an
increased phospholipid synthesis in tumor cells, ini-
tially developed for prostate cancer diagnostics.”’ Since
the choline uptake in healthy brain tissue is low, it has a
high lesion-to-background contrast for brain tumor im-
aging. Besides incidental findings of '"C-choline uptake
in patients with meningioma,’®#0 there is only one study
comparing "C-choline with '8F-FDG PET in seven menin-
gioma patients, suggesting that ""C-choline provides an
improved tumor delineation due to the higher tumor-to-
background contrast.8' "C-choline was largely replaced
by prostate-specific membrane antigen (PSMA) PET lig-
ands more recently. Several case reports have described

incidental findings of increased Ga-PSMA uptake in
meningiomas.®?®” The increased uptake of %Ga-PSMA
in patients with meningioma might be caused by the
neovasculature of the tumor tissue.88

"C-acetate is a PET tracer that targets the cell membrane
lipid synthesis and is used in extracranial tumors that are
difficult to detect using FDG PET (e.g., renal cell carcinoma,
hepatocellular carcinoma).8%% Experience with "C-acetate
in patients with meningioma is limited to one study in
22 patients, which reported the advantage of "C-acetate
over FDG PET for detecting and delineating meningiomas
for treatment response assessment and radiosurgery
planning.5?

The detection of bone invasion of meningiomas might
be assessed by '8F-fluoride PET, which is commonly used
for imaging of bone metastases. Besides incidental find-
ings of increased '8F-fluoride uptake in meningioma pa-
tients,®'%* 2 studies described that "8F-fluoride PET detects
osseous involvement and hyperostosis in meningioma pa-
tients better than CT and MRI, which might be valuable for
treatment planning.®5%

"C-labeled Pittsburgh compound B (PiB) is a
benzothiazole derivative initially designed to bind to
amyloid-beta plaques in the brains of patients with
Alzheimer’s disease. In addition to incidental findings with
increased uptake of amyloid tracers such as ""C-PiB and
'8F-florapronol in meningioma patients,®”-'°° a more ex-
tensive study evaluated the role of "C-PiB in 45 patients
with intracranial tumors, including 29 meningiomas. In
that study, meningiomas had an increased tracer uptake,
and the authors suggested a yet unknown "C-PiB binding
target other than beta-amyloid within these tumors.'

Further observations of incidentally increased PET
tracer uptake in patients with meningioma have been
reported for ®Ga-NOTA-PRGD2, an integrin-targeting
radiotracer,'92 '8F-AV1451, a tracer that binds to the paired
helical tau filament in patients with Alzheimer’s disease,'%
SN-ammonia, targeting glutamine synthetase expres-
sion,'04-196 18E.FMAU, a synthetic pyrimidine analog,'”
and, "8F-FP-CIT targeting dopamine transporters in patients
with Parkinson’s disease.'®® Qverall, the clinical relevance
of these tracers for meningioma imaging remains to be
elucidated.

Summary and Outlook

The current literature provides strong evidence that sev-
eral PET tracers are of diagnostic benefit in patients with
meningioma. Especially PET using SSTR ligands offers a
variety of supplementary information with the potential to
overcome the constraints of conventional MRI or CT. Thus,
this added value justifies a more widespread use of this di-
agnostic method. Of note, the necessary PET infrastructure
including SSTR ligands, which are routinely used for diag-
nostics in patients with neuroendocrine tumors, are widely
available with comparable costs to standard tracers such
as FDG. Novel SSTR ligands labeled with '8F are currently
under evaluation and its additional clinical value compared
to standard SSTR ligands labeled with %Ga is still to be
determined.

€20z 1snbny |z uo Jasn yayjolqigiesuaz ¢ yoyanp wnuauazsbunyodsio4 Aq 0£00612/18Y/L uawa|ddng/g/ajo1e/eou/wod dno-olwapese//:sdyiy wolj papeojumoq



Regarding theranostics for focal radiotherapy using
B-emitters such as %°Y or '77Lu in patients with progressive
meningioma after failure of standard treatment options,
future studies should include an adequate sample size with
clear inclusion and outcome criteria to evaluate the role of
theranostics in the management of meningioma patients.

Furthermore, since meningiomas comprise a number of
subtypes and typical genetic and epigenetic features (e.g.,
methylation profiles), the correlation of these with PET im-
aging features need to be elucidated in more detail.
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