001010423 001__ 1010423
001010423 005__ 20231020201855.0
001010423 0247_ $$2doi$$a10.1088/1361-651X/acea39
001010423 0247_ $$2ISSN$$a0965-0393
001010423 0247_ $$2ISSN$$a1361-651X
001010423 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03048
001010423 0247_ $$2WOS$$aWOS:001049391600001
001010423 037__ $$aFZJ-2023-03048
001010423 082__ $$a530
001010423 1001_ $$0P:(DE-Juel1)186709$$aDemirci, Aytekin$$b0$$ufzj
001010423 245__ $$aStatistical analysis of discrete dislocation dynamics simulations: initial structures, cross-slip and microstructure evolution
001010423 260__ $$aBristol$$bIOP Publ.$$c2023
001010423 3367_ $$2DRIVER$$aarticle
001010423 3367_ $$2DataCite$$aOutput Types/Journal article
001010423 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692597010_4344
001010423 3367_ $$2BibTeX$$aARTICLE
001010423 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010423 3367_ $$00$$2EndNote$$aJournal Article
001010423 520__ $$aOver the past decades, discrete dislocation dynamics simulations have been shown to reliably predict the evolution of dislocation microstructures for micrometer-sized metallic samples. Such simulations provide insight into the governing deformation mechanisms and the interplay between different physical phenomena such as dislocation reactions or cross-slip. This work is focused on a detailed analysis of the influence of the cross-slip on the evolution of dislocation systems. A tailored data mining strategy using the 'discrete-to-continuous (D2C) framework' allows to quantify differences and to quantitatively compare dislocation structures. We analyze the quantitative effects of the cross-slip on the microstructure in the course of a tensile test and a subsequent relaxation to present the role of cross-slip in the microstructure evolution. The precision of the extracted quantitative information using D2C strongly depends on the resolution of the domain averaging. We also analyze how the resolution of the averaging influences the distribution of total dislocation density and curvature fields of the specimen. Our analyzes are important approaches for interpreting the resulting structures calculated by dislocation dynamics simulations.
001010423 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001010423 588__ $$aDataset connected to DataCite
001010423 7001_ $$0P:(DE-HGF)0$$aSteinberger, Dominik$$b1
001010423 7001_ $$0P:(DE-HGF)0$$aStricker, Markus$$b2
001010423 7001_ $$0P:(DE-HGF)0$$aMerkert, Nina$$b3
001010423 7001_ $$0P:(DE-HGF)0$$aWeygand, Daniel$$b4
001010423 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b5$$eCorresponding author
001010423 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/1361-651X/acea39$$gVol. 31, no. 7, p. 075003 -$$n7$$p075003 -$$tModelling and simulation in materials science and engineering$$v31$$x0965-0393$$y2023
001010423 8564_ $$uhttps://juser.fz-juelich.de/record/1010423/files/Demirci_2023_Modelling_Simul._Mater._Sci._Eng._31_075003.pdf$$yOpenAccess
001010423 8767_ $$d2023-10-20$$eHybrid-OA$$jPublish and Read
001010423 909CO $$ooai:juser.fz-juelich.de:1010423$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001010423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186709$$aForschungszentrum Jülich$$b0$$kFZJ
001010423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b5$$kFZJ
001010423 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001010423 9141_ $$y2023
001010423 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010423 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010423 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-29$$wger
001010423 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMODEL SIMUL MATER SC : 2022$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001010423 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001010423 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001010423 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001010423 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001010423 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001010423 920__ $$lyes
001010423 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001010423 9801_ $$aFullTexts
001010423 980__ $$ajournal
001010423 980__ $$aVDB
001010423 980__ $$aUNRESTRICTED
001010423 980__ $$aI:(DE-Juel1)IAS-9-20201008
001010423 980__ $$aAPC