001     1010423
005     20231020201855.0
024 7 _ |a 10.1088/1361-651X/acea39
|2 doi
024 7 _ |a 0965-0393
|2 ISSN
024 7 _ |a 1361-651X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03048
|2 datacite_doi
024 7 _ |a WOS:001049391600001
|2 WOS
037 _ _ |a FZJ-2023-03048
082 _ _ |a 530
100 1 _ |a Demirci, Aytekin
|0 P:(DE-Juel1)186709
|b 0
|u fzj
245 _ _ |a Statistical analysis of discrete dislocation dynamics simulations: initial structures, cross-slip and microstructure evolution
260 _ _ |a Bristol
|c 2023
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692597010_4344
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Over the past decades, discrete dislocation dynamics simulations have been shown to reliably predict the evolution of dislocation microstructures for micrometer-sized metallic samples. Such simulations provide insight into the governing deformation mechanisms and the interplay between different physical phenomena such as dislocation reactions or cross-slip. This work is focused on a detailed analysis of the influence of the cross-slip on the evolution of dislocation systems. A tailored data mining strategy using the 'discrete-to-continuous (D2C) framework' allows to quantify differences and to quantitatively compare dislocation structures. We analyze the quantitative effects of the cross-slip on the microstructure in the course of a tensile test and a subsequent relaxation to present the role of cross-slip in the microstructure evolution. The precision of the extracted quantitative information using D2C strongly depends on the resolution of the domain averaging. We also analyze how the resolution of the averaging influences the distribution of total dislocation density and curvature fields of the specimen. Our analyzes are important approaches for interpreting the resulting structures calculated by dislocation dynamics simulations.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Steinberger, Dominik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stricker, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Merkert, Nina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weygand, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 5
|e Corresponding author
773 _ _ |a 10.1088/1361-651X/acea39
|g Vol. 31, no. 7, p. 075003 -
|0 PERI:(DE-600)2001737-6
|n 7
|p 075003 -
|t Modelling and simulation in materials science and engineering
|v 31
|y 2023
|x 0965-0393
856 4 _ |u https://juser.fz-juelich.de/record/1010423/files/Demirci_2023_Modelling_Simul._Mater._Sci._Eng._31_075003.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010423
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MODEL SIMUL MATER SC : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21