001     1010425
005     20240408211952.0
024 7 _ |a pmid:37562802
|2 pmid
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a 10.2967/jnumed.123.265725
|2 doi
037 _ _ |a FZJ-2023-03049
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gutsche, Robin
|0 P:(DE-Juel1)181076
|b 0
245 _ _ |a Automated Brain Tumor Detection and Segmentation for Treatment Response Assessment Using Amino Acid PET.
260 _ _ |a New York, NY
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712566408_21290
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. Methods: In total, 699 amino acid PET scans using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). 18F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published 18F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. Results: In the test dataset, 92% of lesions with increased uptake (n = 189) and 85% of lesions with iso- or hypometabolic uptake (n = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Conclusion: Our deep learning-based 18F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie (428090865)
|0 G:(GEPRIS)428090865
|c 428090865
|x 1
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 2
588 _ _ |a Dataset connected to DataCite, PubMed, , Journals: juser.fz-juelich.de
650 _ 7 |a AI
|2 Other
650 _ 7 |a FET PET
|2 Other
650 _ 7 |a artificial intelligence
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a neurooncology
|2 Other
650 _ 7 |a volumetry
|2 Other
700 1 _ |a Lowis, Carsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ziemons, Karl
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 3
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brambilla, Cláudia Régio
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 6
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 7
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 8
700 1 _ |a Isensee, Fabian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 10
|e Corresponding author
773 _ _ |a 10.2967/jnumed.123.265725
|g Vol. 64, no. 10, p. 1594 - 1602
|0 PERI:(DE-600)2040222-3
|n 10
|p -
|t Journal of nuclear medicine
|v 64
|y 2023
|x 0097-9058
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/Invoice_JNUMED_2023_265725.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/06_2023_Gutsche_FET_PET_Segmentation.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/Invoice_JNUMED_2023_265725.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/Invoice_JNUMED_2023_265725.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/Invoice_JNUMED_2023_265725.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/Invoice_JNUMED_2023_265725.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/1010425/files/JNUMED-2023-265725v2-Lohmann.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1010425
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a INM-4
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)145110
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21