001010488 001__ 1010488
001010488 005__ 20240226075454.0
001010488 0247_ $$2doi$$a10.1364/OPTCON.492897
001010488 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03083
001010488 0247_ $$2WOS$$aWOS:001044896900010
001010488 037__ $$aFZJ-2023-03083
001010488 082__ $$a530
001010488 1001_ $$0P:(DE-Juel1)144531$$aFan, Xiaoming$$b0
001010488 245__ $$aMethod for the refractive index of various tissues based on fluorescence microscopy
001010488 260__ $$aWashington, DC$$bOptica Publishing Group$$c2023
001010488 3367_ $$2DRIVER$$aarticle
001010488 3367_ $$2DataCite$$aOutput Types/Journal article
001010488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706513446_21453
001010488 3367_ $$2BibTeX$$aARTICLE
001010488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010488 3367_ $$00$$2EndNote$$aJournal Article
001010488 500__ $$aNational Natural Science Foundation of China (82172001); Instrument Function Development of ChineseAcademy of Sciences; Natural Science Foundation of Shanghai (21ZR1474800).
001010488 520__ $$aRefractive index is an important optical constant that characterizes the interactionbetween light and specimen. A difference in refractive index between specimen and immersionmedium introduces the imaging aberration and leads to a problem that the direct thicknessmeasurement of a specimen by optical microscopy is not accurate. However, this aberrationcorrection still requires the exact information of the refractive index of specimen and immersionmedium. Herein, we propose an imaging strategy to estimate the refractive index for an unknownspecimen. A simplified diffraction model is generated to obtain the relationship between axialscaling factor and refractive index. Then regular fluorescence microscopy is performed to measurethe actual axial scaling factors of specimens from mouse muscle and tumor xenograft. Referringto our theoretical plot of axial scaling factor versus refractive index, the refractive index of tissuespecimen is determined. For example, we obtain a mean refractive index (n) value of 1.36 fornormal muscle tissues, and 1.41 for tumor xenografts. We demonstrate that this diffractionmodel-based estimation method is an alternative to the current techniques, improving the accuratemeasurement for refractive index of tissue specimen. The simple instrument requirement with aneasy specimen preparation for this estimation method of refractive index may increase the imagequality on tissue specimens with less aberration.
001010488 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001010488 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010488 7001_ $$0P:(DE-HGF)0$$aTao, Lele$$b1
001010488 7001_ $$0P:(DE-HGF)0$$aZhou, Xiaoyu$$b2
001010488 7001_ $$0P:(DE-HGF)0$$aHe, Xiao$$b3
001010488 7001_ $$aZhang, Yu$$b4
001010488 7001_ $$0P:(DE-HGF)0$$aHuang, Haixin$$b5
001010488 7001_ $$0P:(DE-HGF)0$$aYang, Jiale$$b6
001010488 7001_ $$0P:(DE-HGF)0$$aWang, Simei$$b7
001010488 7001_ $$0P:(DE-HGF)0$$aMa, Zhihui$$b8
001010488 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b9$$ufzj
001010488 7001_ $$00000-0001-9369-0263$$aHuang, Ruimin$$b10$$eCorresponding author
001010488 773__ $$0PERI:(DE-600)3143831-3$$a10.1364/OPTCON.492897$$gVol. 2, no. 7, p. 1638 -$$n7$$p1638 -$$tOptics continuum$$v2$$x2770-0208$$y2023
001010488 8564_ $$uhttps://juser.fz-juelich.de/record/1010488/files/optcon-2-7-1638-1.pdf$$yOpenAccess
001010488 8564_ $$uhttps://juser.fz-juelich.de/record/1010488/files/optcon-2-7-1638-1.gif?subformat=icon$$xicon$$yOpenAccess
001010488 8564_ $$uhttps://juser.fz-juelich.de/record/1010488/files/optcon-2-7-1638-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001010488 8564_ $$uhttps://juser.fz-juelich.de/record/1010488/files/optcon-2-7-1638-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001010488 8564_ $$uhttps://juser.fz-juelich.de/record/1010488/files/optcon-2-7-1638-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001010488 909CO $$ooai:juser.fz-juelich.de:1010488$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b9$$kFZJ
001010488 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001010488 9141_ $$y2023
001010488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001010488 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-08T13:54:12Z
001010488 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-08T13:54:12Z
001010488 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-03-08T13:54:12Z
001010488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001010488 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-24
001010488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001010488 920__ $$lyes
001010488 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001010488 980__ $$ajournal
001010488 980__ $$aVDB
001010488 980__ $$aUNRESTRICTED
001010488 980__ $$aI:(DE-Juel1)IBI-1-20200312
001010488 9801_ $$aFullTexts