001     1010514
005     20230918092302.0
024 7 _ |a 10.1038/s41598-021-88403-4
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03097
|2 datacite_doi
024 7 _ |a 33963206
|2 pmid
024 7 _ |a WOS:000656464100007
|2 WOS
037 _ _ |a FZJ-2023-03097
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Abend, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise
260 _ _ |a [London]
|c 2021
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692363534_8451
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Amundson, S. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Badie, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brzoska, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hargitai, R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kriehuber, R.
|0 P:(DE-Juel1)133469
|b 5
|u fzj
700 1 _ |a Schüle, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kis, E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ghandhi, S. A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lumniczky, K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Morton, S. R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a O’Brien, G.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Oskamp, D.
|0 P:(DE-Juel1)133339
|b 12
|u fzj
700 1 _ |a Ostheim, P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Siebenwirth, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Shuryak, I.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Szatmári, T.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Unverricht-Yeboah, M.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ainsbury, E.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Bassinet, C.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Oestreicher, U.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Kulka, U.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Ristic, Y.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Trompier, F.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Wojcik, A.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Waldner, L.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Port, M.
|0 P:(DE-HGF)0
|b 26
773 _ _ |a 10.1038/s41598-021-88403-4
|g Vol. 11, no. 1, p. 9756
|0 PERI:(DE-600)2615211-3
|n 1
|p 9756
|t Scientific reports
|v 11
|y 2021
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1010514/files/s41598-021-88403-4.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010514
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133469
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)133339
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-03-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-30
920 1 _ |0 I:(DE-Juel1)S-US-20090406
|k S-US
|l Sicherheit und Strahlenschutz, Umgebungsüberwachung,Strahlenbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)S-US-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21