001010527 001__ 1010527
001010527 005__ 20240115202310.0
001010527 0247_ $$2doi$$a10.1093/insilicoplants/diad005
001010527 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03110
001010527 0247_ $$2WOS$$aWOS:001046771300002
001010527 037__ $$aFZJ-2023-03110
001010527 082__ $$a004
001010527 1001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b0$$eCorresponding author
001010527 245__ $$aCollaborative benchmarking of functional-structural root architecture models: Quantitative comparison of simulated root water uptake
001010527 260__ $$a[Oxford]$$bOxford University Press$$c2023
001010527 3367_ $$2DRIVER$$aarticle
001010527 3367_ $$2DataCite$$aOutput Types/Journal article
001010527 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705307652_15489
001010527 3367_ $$2BibTeX$$aARTICLE
001010527 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010527 3367_ $$00$$2EndNote$$aJournal Article
001010527 520__ $$aFunctional-structural root architecture models have evolved as tools for the design of improved agricultural management practices and for the selection of optimal root traits. In order to test their accuracy and reliability, we present the first benchmarking of root water uptake from soil using five well-established functional-structural root architecture models: DuMux, CPlantBox, R-SWMS, OpenSimRoot and SRI. The benchmark scenarios include basic tests for water flow in soil and roots as well as advanced tests for the coupled soil-root system. The reference solutions and the solutions of the different simulators are available through Jupyter Notebooks on a GitHub repository. All of the simulators were able to pass the basic tests and continued to perform well in the benchmarks for the coupled soil-plant system. For the advanced tests, we created an overview of the different ways of coupling the soil and the root domains as well as the different methods used to account for rhizosphere resistance to water flow. Although the methods used for coupling and modelling rhizosphere resistance were quite different, all simulators were in reasonably good agreement with the reference solution. During this benchmarking effort, individual simulators were able to learn about their strengths and challenges, while some were even able to improve their code. Some now include the benchmarks as standard tests within their codes. Additional model results may be added to the GitHub repository at any point in the future and will be automatically included in the comparison.
001010527 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001010527 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010527 7001_ $$0P:(DE-HGF)0$$aBlack, Christopher K$$b1
001010527 7001_ $$0P:(DE-HGF)0$$aCouvreur, Valentin$$b2
001010527 7001_ $$0P:(DE-HGF)0$$aDelory, Benjamin M$$b3
001010527 7001_ $$0P:(DE-HGF)0$$aDoussan, Claude$$b4
001010527 7001_ $$0P:(DE-HGF)0$$aHeymans, Adrien$$b5
001010527 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b6
001010527 7001_ $$0P:(DE-Juel1)200259$$aKhare, Deepanshu$$b7$$ufzj
001010527 7001_ $$0P:(DE-HGF)0$$aKoch, Axelle$$b8
001010527 7001_ $$0P:(DE-HGF)0$$aKoch, Timo$$b9
001010527 7001_ $$0P:(DE-Juel1)161296$$aKuppe, Christian W$$b10
001010527 7001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b11
001010527 7001_ $$0P:(DE-Juel1)187335$$aLeitner, Daniel$$b12
001010527 7001_ $$0P:(DE-Juel1)171180$$aLobet, Guillaume$$b13
001010527 7001_ $$0P:(DE-HGF)0$$aMeunier, Félicien$$b14
001010527 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes A$$b15
001010527 7001_ $$0P:(DE-HGF)0$$aSchäfer, Ernst D$$b16
001010527 7001_ $$0P:(DE-Juel1)179508$$aSelzner, Tobias$$b17
001010527 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b18
001010527 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b19
001010527 773__ $$0PERI:(DE-600)3019806-9$$a10.1093/insilicoplants/diad005$$gVol. 5, no. 1, p. diad005$$n1$$pdiad005$$tIn silico plants$$v5$$x2517-5025$$y2023
001010527 8564_ $$uhttps://juser.fz-juelich.de/record/1010527/files/E16161682.pdf
001010527 8564_ $$uhttps://juser.fz-juelich.de/record/1010527/files/diad005.pdf$$yOpenAccess
001010527 8767_ $$8E16161682$$92023-05-22$$a1200195834$$d2023-08-24$$eAPC$$jZahlung erfolgt
001010527 909CO $$ooai:juser.fz-juelich.de:1010527$$popenaire$$popen_access$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b0$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b6$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200259$$aForschungszentrum Jülich$$b7$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161296$$aForschungszentrum Jülich$$b10$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b11$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187335$$aForschungszentrum Jülich$$b12$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171180$$aForschungszentrum Jülich$$b13$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b15$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179508$$aForschungszentrum Jülich$$b17$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b18$$kFZJ
001010527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b19$$kFZJ
001010527 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001010527 9141_ $$y2023
001010527 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001010527 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001010527 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-15
001010527 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010527 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-15T16:13:56Z
001010527 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-15T16:13:56Z
001010527 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-15
001010527 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010527 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-15
001010527 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-15T16:13:56Z
001010527 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIN SILICO PLANTS : 2022$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001010527 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001010527 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001010527 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001010527 980__ $$ajournal
001010527 980__ $$aVDB
001010527 980__ $$aI:(DE-Juel1)IBG-3-20101118
001010527 980__ $$aI:(DE-Juel1)IBG-2-20101118
001010527 980__ $$aAPC
001010527 980__ $$aUNRESTRICTED
001010527 9801_ $$aAPC
001010527 9801_ $$aFullTexts