001     1010527
005     20240115202310.0
024 7 _ |a 10.1093/insilicoplants/diad005
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03110
|2 datacite_doi
024 7 _ |a WOS:001046771300002
|2 WOS
037 _ _ |a FZJ-2023-03110
082 _ _ |a 004
100 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 0
|e Corresponding author
245 _ _ |a Collaborative benchmarking of functional-structural root architecture models: Quantitative comparison of simulated root water uptake
260 _ _ |a [Oxford]
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705307652_15489
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional-structural root architecture models have evolved as tools for the design of improved agricultural management practices and for the selection of optimal root traits. In order to test their accuracy and reliability, we present the first benchmarking of root water uptake from soil using five well-established functional-structural root architecture models: DuMux, CPlantBox, R-SWMS, OpenSimRoot and SRI. The benchmark scenarios include basic tests for water flow in soil and roots as well as advanced tests for the coupled soil-root system. The reference solutions and the solutions of the different simulators are available through Jupyter Notebooks on a GitHub repository. All of the simulators were able to pass the basic tests and continued to perform well in the benchmarks for the coupled soil-plant system. For the advanced tests, we created an overview of the different ways of coupling the soil and the root domains as well as the different methods used to account for rhizosphere resistance to water flow. Although the methods used for coupling and modelling rhizosphere resistance were quite different, all simulators were in reasonably good agreement with the reference solution. During this benchmarking effort, individual simulators were able to learn about their strengths and challenges, while some were even able to improve their code. Some now include the benchmarks as standard tests within their codes. Additional model results may be added to the GitHub repository at any point in the future and will be automatically included in the comparison.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Black, Christopher K
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Couvreur, Valentin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Delory, Benjamin M
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Doussan, Claude
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heymans, Adrien
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 6
700 1 _ |a Khare, Deepanshu
|0 P:(DE-Juel1)200259
|b 7
|u fzj
700 1 _ |a Koch, Axelle
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Koch, Timo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kuppe, Christian W
|0 P:(DE-Juel1)161296
|b 10
700 1 _ |a Landl, Magdalena
|0 P:(DE-Juel1)165987
|b 11
700 1 _ |a Leitner, Daniel
|0 P:(DE-Juel1)187335
|b 12
700 1 _ |a Lobet, Guillaume
|0 P:(DE-Juel1)171180
|b 13
700 1 _ |a Meunier, Félicien
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Postma, Johannes A
|0 P:(DE-Juel1)144879
|b 15
700 1 _ |a Schäfer, Ernst D
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Selzner, Tobias
|0 P:(DE-Juel1)179508
|b 17
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 18
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 19
773 _ _ |a 10.1093/insilicoplants/diad005
|g Vol. 5, no. 1, p. diad005
|0 PERI:(DE-600)3019806-9
|n 1
|p diad005
|t In silico plants
|v 5
|y 2023
|x 2517-5025
856 4 _ |u https://juser.fz-juelich.de/record/1010527/files/E16161682.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1010527/files/diad005.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010527
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)200259
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)165987
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)187335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)171180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)179508
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-15T16:13:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-15T16:13:56Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-15T16:13:56Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IN SILICO PLANTS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21