001010546 001__ 1010546
001010546 005__ 20240112202227.0
001010546 0247_ $$2doi$$a10.3390/cryst13081267
001010546 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03120
001010546 0247_ $$2WOS$$aWOS:001056274200001
001010546 037__ $$aFZJ-2023-03120
001010546 041__ $$aEnglish
001010546 082__ $$a540
001010546 1001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b0$$eCorresponding author
001010546 245__ $$aDetermination of Thermal Damage Threshold in THz Photomixers Using Raman Spectroscopy
001010546 260__ $$aBasel$$bMDPI$$c2023
001010546 3367_ $$2DRIVER$$aarticle
001010546 3367_ $$2DataCite$$aOutput Types/Journal article
001010546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705059263_20197
001010546 3367_ $$2BibTeX$$aARTICLE
001010546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010546 3367_ $$00$$2EndNote$$aJournal Article
001010546 520__ $$aThe increase of device lifetime and reliability of THz photomixers will play an essential role in their possible future application. Therefore, their optimal work conditions/operation range, i.e., the maximal incident optical power should be experimentally estimated. We fabricated and tested THz photomixer devices based on nitrogen-implanted GaAs integrated with a Bragg reflector. Raman spectroscopy was applied to investigate the material properties and to disclose any reversible or irreversible material changes. The results indicate that degradation effects in the photomixer structures/material could be avoided if the total optical power density does not exceed levels of about 0.7 mW/µm2 for 100 min of operation. Furthermore, the investigations performed during 1000 min of optical exposure on the photomixer devices’ central region comprising interdigitated metal-semiconductor-metal (MSM) structures suggest a reversible “curing” mechanism if the power density level of ~0.58 mW/µm2 is not exceeded. Long-term operation (up to 1000 h) reveals that the photomixer structures can withstand an average optical power density of up to ~0.4 mW/µm2 without degradation when biased at 10 V. Besides the decrease of the position of the A1g (LO) Raman mode from ~291 cm−1 down to ~288 cm−1 with increasing optical power density and operation time, broad Raman modes evolve at about 210 cm−1, which can be attributed to degradation effects in the active photomixer/MSM area. In addition, the performed carrier lifetime and photomixer experiments demonstrated that these structures generated continuous wave sub-THz radiation efficiently as long as their optimal work conditions/operation range were within the limits established by our Raman studies.
001010546 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001010546 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010546 7001_ $$0P:(DE-Juel1)130495$$aAdam, Roman$$b1
001010546 7001_ $$0P:(DE-HGF)0$$aChen, Genyu$$b2
001010546 7001_ $$0P:(DE-HGF)0$$aChakraborty, Debamitra$$b3
001010546 7001_ $$0P:(DE-HGF)0$$aCheng, Jing$$b4
001010546 7001_ $$0P:(DE-HGF)0$$aPericolo, Anthony$$b5
001010546 7001_ $$0P:(DE-HGF)0$$aKomissarov, Ivan$$b6
001010546 7001_ $$0P:(DE-Juel1)130582$$aBürgler, Daniel E.$$b7
001010546 7001_ $$0P:(DE-Juel1)173665$$aHeidtfeld, Sarah F.$$b8
001010546 7001_ $$0P:(DE-HGF)0$$aSerafini, John$$b9
001010546 7001_ $$0P:(DE-HGF)0$$aPreble, Stefan$$b10
001010546 7001_ $$0P:(DE-HGF)0$$aSobolewski, Roman$$b11
001010546 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b12
001010546 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b13
001010546 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde H.$$b14$$eCorresponding author
001010546 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst13081267$$gVol. 13, no. 8, p. 1267 -$$n8$$p1267 -$$tCrystals$$v13$$x2073-4352$$y2023
001010546 8564_ $$uhttps://juser.fz-juelich.de/record/1010546/files/crystals-13-01267.pdf$$yOpenAccess
001010546 8767_ $$d2023-09-06$$eAPC$$jZahlung erfolgt
001010546 909CO $$ooai:juser.fz-juelich.de:1010546$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b0$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130495$$aForschungszentrum Jülich$$b1$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich$$b7$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173665$$aForschungszentrum Jülich$$b8$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b12$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b13$$kFZJ
001010546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b14$$kFZJ
001010546 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001010546 9141_ $$y2023
001010546 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001010546 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001010546 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001010546 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001010546 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-26
001010546 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001010546 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-26
001010546 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-26
001010546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010546 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-26
001010546 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:16Z
001010546 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:16Z
001010546 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:16Z
001010546 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2022$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001010546 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001010546 920__ $$lyes
001010546 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
001010546 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
001010546 980__ $$ajournal
001010546 980__ $$aVDB
001010546 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001010546 980__ $$aI:(DE-Juel1)PGI-6-20110106
001010546 980__ $$aAPC
001010546 980__ $$aUNRESTRICTED
001010546 9801_ $$aAPC
001010546 9801_ $$aFullTexts