| Hauptseite > Publikationsdatenbank > Determination of Thermal Damage Threshold in THz Photomixers Using Raman Spectroscopy > print |
| 001 | 1010546 | ||
| 005 | 20240112202227.0 | ||
| 024 | 7 | _ | |a 10.3390/cryst13081267 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-03120 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001056274200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-03120 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Mikulics, Martin |0 P:(DE-Juel1)128613 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Determination of Thermal Damage Threshold in THz Photomixers Using Raman Spectroscopy |
| 260 | _ | _ | |a Basel |c 2023 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705059263_20197 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The increase of device lifetime and reliability of THz photomixers will play an essential role in their possible future application. Therefore, their optimal work conditions/operation range, i.e., the maximal incident optical power should be experimentally estimated. We fabricated and tested THz photomixer devices based on nitrogen-implanted GaAs integrated with a Bragg reflector. Raman spectroscopy was applied to investigate the material properties and to disclose any reversible or irreversible material changes. The results indicate that degradation effects in the photomixer structures/material could be avoided if the total optical power density does not exceed levels of about 0.7 mW/µm2 for 100 min of operation. Furthermore, the investigations performed during 1000 min of optical exposure on the photomixer devices’ central region comprising interdigitated metal-semiconductor-metal (MSM) structures suggest a reversible “curing” mechanism if the power density level of ~0.58 mW/µm2 is not exceeded. Long-term operation (up to 1000 h) reveals that the photomixer structures can withstand an average optical power density of up to ~0.4 mW/µm2 without degradation when biased at 10 V. Besides the decrease of the position of the A1g (LO) Raman mode from ~291 cm−1 down to ~288 cm−1 with increasing optical power density and operation time, broad Raman modes evolve at about 210 cm−1, which can be attributed to degradation effects in the active photomixer/MSM area. In addition, the performed carrier lifetime and photomixer experiments demonstrated that these structures generated continuous wave sub-THz radiation efficiently as long as their optimal work conditions/operation range were within the limits established by our Raman studies. |
| 536 | _ | _ | |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535) |0 G:(DE-HGF)POF4-5353 |c POF4-535 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Adam, Roman |0 P:(DE-Juel1)130495 |b 1 |
| 700 | 1 | _ | |a Chen, Genyu |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Chakraborty, Debamitra |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Cheng, Jing |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Pericolo, Anthony |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Komissarov, Ivan |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Bürgler, Daniel E. |0 P:(DE-Juel1)130582 |b 7 |
| 700 | 1 | _ | |a Heidtfeld, Sarah F. |0 P:(DE-Juel1)173665 |b 8 |
| 700 | 1 | _ | |a Serafini, John |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Preble, Stefan |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Sobolewski, Roman |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Schneider, Claus M. |0 P:(DE-Juel1)130948 |b 12 |
| 700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 13 |
| 700 | 1 | _ | |a Hardtdegen, Hilde H. |0 P:(DE-Juel1)125593 |b 14 |e Corresponding author |
| 773 | _ | _ | |a 10.3390/cryst13081267 |g Vol. 13, no. 8, p. 1267 - |0 PERI:(DE-600)2661516-2 |n 8 |p 1267 - |t Crystals |v 13 |y 2023 |x 2073-4352 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010546/files/crystals-13-01267.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1010546 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)128613 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130495 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130582 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)173665 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130948 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130824 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)125593 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5353 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
| 915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-26 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-26 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T14:57:16Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T14:57:16Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T14:57:16Z |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CRYSTALS : 2022 |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-26 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|