001010659 001__ 1010659
001010659 005__ 20240313094915.0
001010659 037__ $$aFZJ-2023-03174
001010659 041__ $$aEnglish
001010659 1001_ $$0P:(DE-Juel1)180150$$aFischer, Kirsten$$b0$$eCorresponding author$$ufzj
001010659 1112_ $$aStatistical physics & machine learning back together again$$cCargese$$d2023-07-31 - 2023-08-12$$wFrance
001010659 245__ $$aOptimal signal propagation in ResNets through residual scaling
001010659 260__ $$c2023
001010659 3367_ $$033$$2EndNote$$aConference Paper
001010659 3367_ $$2BibTeX$$aINPROCEEDINGS
001010659 3367_ $$2DRIVER$$aconferenceObject
001010659 3367_ $$2ORCID$$aCONFERENCE_POSTER
001010659 3367_ $$2DataCite$$aOutput Types/Conference Poster
001010659 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1704196447_26656$$xAfter Call
001010659 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001010659 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001010659 536__ $$0G:(DE-Juel-1)BMBF-01IS19077A$$aRenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)$$cBMBF-01IS19077A$$x2
001010659 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x3
001010659 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x4
001010659 536__ $$0G:(DE-82)EXS-SF-neuroIC002$$aneuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)$$cEXS-SF-neuroIC002$$x5
001010659 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b1$$ufzj
001010659 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b2$$ufzj
001010659 909CO $$ooai:juser.fz-juelich.de:1010659$$pVDB
001010659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180150$$aForschungszentrum Jülich$$b0$$kFZJ
001010659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b1$$kFZJ
001010659 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b2$$kFZJ
001010659 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001010659 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001010659 9141_ $$y2023
001010659 920__ $$lyes
001010659 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001010659 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001010659 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001010659 980__ $$aposter
001010659 980__ $$aVDB
001010659 980__ $$aI:(DE-Juel1)INM-6-20090406
001010659 980__ $$aI:(DE-Juel1)IAS-6-20130828
001010659 980__ $$aI:(DE-Juel1)INM-10-20170113
001010659 980__ $$aUNRESTRICTED
001010659 981__ $$aI:(DE-Juel1)IAS-6-20130828