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Abstract

Residual networks (ResNets) have significantly better trainability and thus perfor-
mance than feed-forward networks at large depth. Introducing skip connections
facilitates signal propagation to deeper layers. In addition, previous works found
that adding a scaling parameter for the residual branch further improves general-
ization performance. While they empirically identified a particularly beneficial
range of values for this scaling parameter, the associated performance improvement
and its universality across network hyperparameters yet need to be understood.
For feed-forward networks (FFNets), finite-size theories have led to important
insights with regard to signal propagation and hyperparameter tuning. We here
derive a systematic finite-size theory for ResNets to study signal propagation and its
dependence on the scaling for the residual branch. We derive analytical expressions
for the response function, a measure for the network’s sensitivity to inputs, and
show that for deep networks the empirically found values for the scaling parameter
lie within the range of maximal sensitivity. Furthermore, we obtain an analyt-
ical expression for the optimal scaling parameter that depends only weakly on
other network hyperparameters, such as the weight variance, thereby explaining
its universality across hyperparameters. Overall, this work provides a framework
for theory-guided optimal scaling in ResNets and, more generally, provides the
theoretical framework to study ResNets at finite widths.

1 Introduction

While feed-forward neural networks (FFNets) have proven successful at learning a multitude of
tasks [13, 22], they become difficult to train at great depths [8]. As a result, very deep FFNets yield
worse performance than their shallow counterparts. However, assuming adding layers with identity
mappings to already successfully trained shallow networks, such a performance degradation should
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not be present. Therefore, [8, 9] introduced residual networks (ResNets) that contain skip connections
directly connecting intermediate layers with identity mappings. Networks such as ResNet-50 [8]
or ResNet-1001 [9] yield state-of-the-art performance on common benchmark data sets such as
CIFAR-10 [12].

A scaling of the residual branch, i.e. of the non-identity mapping in each layer, was first introduced
by Szegedy et al. (2017) who found that for networks with large numbers of convolutional filters
training becomes unstable and leads to inactive neurons. While this effect could not be mitigated
by additional batch normalization [11], downscaling the residual branch by a value α between 0.1
and 0.3 proved to be a reliable solution. Finding the optimal residual scaling and a mechanistic
explanation for its effectiveness remains an open question.

We here tackle the problem of optimal scaling from a signal propagation perspective. We study the
response function of residual networks that describes the networks’ sensitivity to varying inputs. As
the network needs to be able to distinguish between different data samples, the overall range of output
responses is a relevant indicator for both trainability and generalization. While a stronger signal
generally ensures that two data samples can be better distinguished, this effect may be counteracted
by saturation effects of the non-linearity in the residual branch of the network. The residual scaling
parameter determines how strongly differences across data samples are amplified and propagated
through the network.

Our main contributions on optimal signal propagation in ResNets and its relation to residual scaling
are as follows

• we derive analytic expressions for the response function of residual networks that describes
the networks’ sensitivity to varying inputs;

• we find a slower decay of the response function in residual networks compared to feed-
forward networks as a function of depth, allowing information propagation to deeper network
layers;

• we show that the response function of the network output has a distinct maximum and that
the corresponding residual scaling parameter lies precisely within the range empirically
found by Szegedy et al. (2017);

• we derive an approximate expression for the optimal residual scaling based on saturation
arguments, finding universal scales that are insensitive to different hyperparameters and thus
explaining its universality for deep networks.

The derivation of the response function is part of a novel field-theoretic description of the Bayesian
network prior for residual networks. This framework can be used to systematically take into account
finite-size properties of neural networks and thus holds potential beyond the content of this work.

The main part is structured into two parts: We first derive the response function of residual networks
and discuss its properties, in particular its dependence on the residual scaling parameter. We then
study the residual scaling parameter for which the network response is maximal, relating this scaling
to optimal signal propagation that is bounded by saturation effects of the non-linearity.

1.1 Related works

Signal propagation in residual networks has shown a sub-exponential or even polynomial decay
rate of sample correlations to their fixed point values. This ensures, in contrast to feed-forward
networks [18, 19], that residual networks are always close to the edge of chaos, leading to better
trainability also at great depth [25]. Building on the empirical observation that connections skipping
a certain number of fully-connected layers lead to smaller training errors, Li et al. (2016) show that
the condition number of the Hessian of the loss function does not grow with network depth but is
depth-invariant. Further, ResNets achieve improved data separability compared to FFNets as they
preserve angles between samples and thus exhibit less degradation of the ratio between within-class
distance and between-class distance [5].

The residual scaling parameter affects the behavior of gradients in ResNets: Smaller scaling values
reduce the whitening of gradients with increasing depth [1]. Regarding the problem of vanishing
or exploding gradients, Ling & Qiu (2019) require the singular values of the input-output Jacobian
to be of order one, leading to a scaling by the square root of the inverse depth. In a similar spirit
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Figure 1: Signal distribution in residual network. (a) Network layer with residual branch and skip
connection. The residual branch returns h 7→ F(h), the layer passes on F(h) + h to the next layer.
(b) Distribution of the signal hl after layer l (solid curves) relative to the dynamic range V (shaded
orange area) of the activation function φ = erf (dashed curve). The signal is Gaussian distributed
hl ∼ N (0,Kl) with variance given by Kl, which depends on the residual scaling parameter α.
For values larger than the optimal scaling α > α∗, part of the signal is lost in the saturation of the
activation function φ (dark blue). For values smaller than the optimal scaling α < α∗, the signal is
restricted to a small fraction of the dynamic range (light blue) in which the activation function is
typically linear. For optimal scaling α = α∗, the signal optimally utilizes the whole dynamic range
V of the activation function φ (blue). (c) The response function χl describes how the variance Kl,
corresponding to the diagonal element of the GP kernel, changes to linear order in the perturbation of
the input kernel δK0 around its data mean 〈K0〉. The kernel Kl of the signal distribution can only
increase across layers due to the skip connections; its rate of increase is governed by the residual
scaling parameter α. If the signal goes into saturation (α > α∗) or remains close to zero (α < α∗),
then the overall response of the network output to a change of the input kernel is limited.

Zaeemzadeh et al. (2021) show that skip connections lead to norm-preservation of the gradients
during backpropagation by shifting the singular values closer to one; norm-preservation in turn
improves trainability and generalization.

Regarding optimal residual scaling, there exist various works with divided results: From a kernel
perspective, Huang et al. (2020) argue that the Neural Tangent Kernel (NTK) in the double limit
of infinite width and depth becomes degenerate for FFNets but not for ResNets, suggesting a
polynomial scaling of the residual branch with the inverse depth for better kernel stability at great
depth. According to Tirer et al. (2022), smaller residual scalings lead to a smoother NTK and
thereby to better interpolation properties between data points. [6, 7, 27] argue for a scaling by the
square root of the inverse depth: while [6, 7] show that the resulting NTK is universal and can
express any function, Zhang et al. (2022) find that it stabilizes forward and backward propagation.
Studying the spectral properties of the NTK, Barzilai et al. (2023) find a bias of convolutional
ResNets towards learning functions with low-frequency or localized over few pixels. Further, they
show that the scaling proposed by Huang et al. (2020) leads to a less expressive dot-product kernel
for convolutional ResNets, therefore arguing for a depth-independent constant residual scaling. By
performing a grid search, Zhang et al. (2019) find a value near 0.1 to yield best generalization
performance for deep ResNets. Despite these efforts, finding the optimal scaling remains an open
question.

2 Response function as measure for network sensitivity

We here study the following network model

h0 = W inx+ bin ,

hl = hl−1 + α
[
W lφ(hl−1) + bl

]
l = 1, . . . , L, (1)

y = W outφ(hL) + bout ,

yielding a mapping from the input x ∈ Rdin to the output y ∈ Rdout as x 7→ f(x; θ) = y with network
parameters θ =

{
W in, bin, W l, bl, W out, bout

}
. Similar to state-of-the-art models such as ResNet-50
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Figure 2: Residual kernels C̄l (a) and the respective response function ηl (b) in ResNets (blue)
compared to FFNets (green). In (a) error bars indicate standard error of the mean obtained from
simulation over 103 network initializations, solid curves show theory values (2). In (b) dots represent
simulations over 102 input samples and 103 network initializations, solid curves show theory values
(4). Errors are of order 10−5 and therefore not shown. ResNets exhibit a slower decay over layers
l compared to FFNets. Other parameters: σ2

w, in = σ2
w = σ2

w, out = 1.2, σ2
b, in = σ2

b = σ2
b, out =

0.2, din = dout = 100, N = 500, α = 1.

[8], the model contains a linear readin and a fully-connected readout layer. Thereby, the input x ∈ Rdin

of dimension din, the signal hl ∈ RN in layer l of size N , and the output y ∈ Rdout of dimension
dout can have different dimensions. We refer to the residual branch F(hl−1) = α

[
W lφ(hl−1) + bl

]
together with the skip connection hl−1 in (1) as a network layer with index l (see Figure 1(a)). The
total number of layers is given by L. We assume the non-linear activation function φ to be saturating
and twice differentiable almost everywhere; two common choices satisfying both conditions are
the logistic function and the error function. In the following we use φ = erf. The residual branch
is multiplied by a scaling factor α, which is referred to as the residual scaling parameter in the
following. We study networks at initialization and thus assume that the network parameters are
Gaussian distributed W in

ij
i.i.d.∼ N (0, σ2

w, in/din), bin
i

i.i.d.∼ N (0, σ2
b, in), W l

ij
i.i.d.∼ N (0, σ2

w/N), bli
i.i.d.∼

N (0, σ2
b ), W out

ij
i.i.d.∼ N (0, σ2

w, out/N), and bout
i

i.i.d.∼ N (0, σ2
b, out).

In this work we study the sensitivity of signal propagation to different inputs. We build on the Gaussian
process (GP) result for ResNets [10, 24, 2]: The residual F(hl) = hl − hl−1 for 1 ≤ l ≤ L becomes
Gaussian distributed for infinitely wide networks (N → ∞) with variance (see Supplementary
Material A for a self-contained derivation of the N →∞ limit as well as the leading order finite N
corrections)

C̄l = α2σ2
w 〈φ(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1) + α2σ2

b 1 ≤ l ≤ L, (2)

where C̄0 =
σ2
w, in
din

x>x+σ2
b, in and Kl−1 =

∑l−1
k=0 C̄

k is the variance of the signal hl−1 of layer l−1.
For brevity, we set K0 := C̄0 and refer to C̄l as the ’residual kernel’ and to Kl as ’kernel’. Note that
the full kernels including covariances across different inputs can be derived with similar methods
as in Supplementary Material A; Kl is usually referred to as the GP kernel [14, 10, 24]. Since skip
connections just pass on the signal across layers, the variances of the residual branch and the skip
connections simply add up under the assumption of i.i.d. distributed network parameters θ such that
the kernel Kl−1 is the sum of the residual kernels C̄k of all previous layers (for a formal derivation,
see Supplementary Material A). More precisely, taking into account the readin and readout layers,
the signal hl is Gaussian distributed with

Kl =


σ2
w, in
din

x>x+ σ2
b, in l = 0 ,∑l

k=0 C̄
k 1 ≤ l ≤ L ,

σ2
w, out〈φ(hL)φ(hL)〉hL∼N (0,KL) + σ2

b, out l = L+ 1 .

(3)

Here x>x =
∑din
i=1 xixi denotes the scalar product over input dimensions and KL+1 is the kernel of

the network output y. The recursive formulation for the GP kernel commonly used in previous works
[10, 24, 2] can be recovered as Kl = Kl−1 + C̄l for 1 ≤ l ≤ L.
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We are interested in how the signal in deeper layers changes when changing the input from x to

x + δx. This leads to a change of the input kernel K0 =
σ2
w, in
d (x + δx)>(x + δx) + σ2

b, in. Since
we are interested in the scaling of the parameters in the intermediate part of the network, excluding
the input parameters (W in, bin), it is sufficient to study the signal propagation of the input kernel
K0 + δK0. The measure of interest is the response function that describes how the kernel Kl of
a later network layer changes as a result of a perturbation in the input kernel. In that sense, it is a
measure of the network’s sensitivity to different inputs. For simplicity, we here consider perturbations
around the average 〈K0〉 over the data distribution: K0 = 〈K0〉+ δK0.

Main result of the theoretical framework.

The response function ηl of the residual F(hl) = hl − hl−1 is given by

ηl = δl0 + 1l>0 α
2σ2
w〈φ′(hl−1)2 + φ′′(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1)

l−1∑
k=0

ηk , (4)

where 1l>0 denotes the indicator function such that the second term contributes only for l > 0.
The response function of the signal hl in (1) is then given by the summed residual responses
χl =

∑l
k=0 η

k. The overall response of the network output amounts to

χout = σ2
w, out〈φ′(hL)2 + φ′′(hL)φ(hL)〉hL∼N (0,KL)

L∑
k=0

ηk . (5)

This result, that formally arises as the first-order approximation in O
(
N−1

)
from a systematic

field-theoretic calculation (see Supplementary Material A), can be intuitively understood by linear
response arguments: To linear order in the perturbation δK0, we have the residual kernel C̄l =

C̄l|〈K0〉 + ∂Cl

∂K0 |〈K0〉 δK
0 +O

(
δ2
)
, yielding for the response

ηl =
∂Cl

∂K0
|〈K0〉 = α2σ2

w

∂

∂Kl−1 〈φ(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1)

∂Kl−1

∂K0
|〈K0〉,

and then rewriting ∂
∂Kl−1 〈φ(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1) = 〈φ′(hl−1)2 +

φ′′(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1) with help of Price’s theorem [17] and ∂Kl−1

∂K0 |〈K0〉 =∑l−1
k=0

∂Ck

∂K0 |〈K0〉 =
∑l−1
k=0 η

k by the chain rule. The latter expectation value measures how
the perturbation of the kernel Kl−1 affects the residual kernel C̄l in layer l. It gets multiplied by
the accumulated perturbations of all previous layers, as one expects intuitively due to the skip
connections in residual networks. The expression for the response of the kernels Kl follows directly
from its definition χl = ∂Kl

∂K0 |〈K0〉 = ∂
∂K0

∑l
k=0 C̄

k|〈K0〉 =
∑l
k=0 η

l. Note that the field-theoretic
formalism (see Supplementary Material A) formally shows that this linear response approximation
is the O

(
N−1

)
finite-size correction to the GP result. The framework furthermore allows treating

higher-order corrections in a systematic way. For feed-forward and recurrent networks this has been
done in Segadlo et al. (2022).

In Figure 2 we compare the behavior of the residual kernels C̄l and the response function ηl between
FFNets and ResNets. While C̄l in FFNets decays to zero as a function of depth, it approaches a
value larger than zero in ResNets due to accumulation of variance across layers. Similarly, while
the response function in FFNets decays exponentially to zero, it decays much slower in ResNets
and approaches zero only asymptotically (see Supplementary Material C.1). The latter observation
matches previous results by Yang & Schoenholz (2017) based on the convergence rate of the kernels.
In contrast, we here derive the response function that explicitly measures the dependence on the input
kernel.

Next, we study the effect of the residual scaling parameter α on the kernels Kl and response function
χl of layer l as those describe the distribution of the signal hl. Since α2 scales the residual kernels
C̄l in (2) that are being summed to obtain Kl, the residual scaling governs the rate of increase of Kl

across layers (see Figure 3(a)). The response function χl exhibits the same scaling and thus behavior
(see Figure 3(b)).
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Figure 3: Dependence of kernels Kl (a) and the respective response function χl (b) on residual
scaling parameter α. The residual scaling takes values α ∈ [1.0, 0.3, 0.1] (from dark to light
blue). It governs the rate of increase in both quantities. Other parameters: σ2

w, in = σ2
w = σ2

w, out =

1.2, σ2
b, in = σ2

b = σ2
b, out = 0.2, din = dout = 100, N = 500.

3 Optimal scaling of residual branch

Given the strong dependence of the response function on the residual scaling parameter in Figure 3,
we study whether an optimal scaling value α∗ exists that maximizes the output response χout. Good
signal propagation is linked to improved trainability and thus higher generalization performance of
trained networks [19, 25].

In Figure 4(a), we indeed see that the output response χout has a maximum for a particular residual
scaling α∗. The shape of the response function and thus the optimal value α∗ depend on the network
depth L, shifting to smaller values α∗ with greater depth. However, we observe an antagonistic effect:
the depth dependence becomes weaker for deeper networks. The optimal value α∗ lies between
[0.1, 0.3], as found empirically in previous works [23].

Due to the recursive nature of the non-linear Eqs. (4)-(5) for the response function, we cannot
determine the optimal value α∗ analytically. However, we can discern the mechanism behind the
signal propagation from (3): For deeper networks the kernels Kl grow continuously, so that the signal
hl leaves the dynamic range V of the activation function φ. In consequence, part of the signal hL is
lost in the readout layer, reducing the output response χout to varying inputs. The magnitude of the
kernels Kl depends on α2, so that smaller residual scalings lead to a smaller growth of the kernels
Kl and keep the signal hL in the dynamic range V . For very small scalings α, the contribution of the
residual branch is suppressed and the network reduces to a single layer perceptron.

Based on this intuition, we derive a theory for the optimal scaling α∗: We assume that the signal
hl stays in the dynamic range V of the activation function so that φ(hl) ≈ hl. The residual kernel
then simplifies to C̄l = α2σ2

w

∑l−1
k=0 C̄

k + α2σ2
b and hence C̄l = C̄l−1 + α2σ2

wC̄
l−1. Solving this

recursion, we get C̄l = (1 + α2σ2
w)l−1 (α2σ2

wK
0 + α2σ2

b ). Using the sum of the first L+ 1 terms
of the geometric series and C̄0 = K0 per definition, we obtain

KL =

L∑
k=0

C̄k (6)

= (1 + α2σ2
w)LK0 +

σ2
b

σ2
w

(
(1 + α2σ2

w)L − 1
)
. (7)

Assuming the 1σ range of the distribution to stay within the dynamic range V for a point-symmetric
activation function φ, we set V/2 !

=
√
KL to obtain an expression for the optimal scaling parameter.
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Figure 4: Optimal scaling of residual branch. (a) Output response χout for different depths
L ∈ [2, 5, 10, 20, 30] (light to dark blue) and input kernel K0 = 0.05. The residual scaling
values with largest response concentrate with increasing depth. (b) Optimal residual scaling α∗ =
argmax(χout) for input kernel K0 = 0.05. Simulation values (dots) from (a) agree well with
theory (8) (curve). (c) Dependence of output response on input kernel K0 and residual scaling α
at depth L = 30. The optimal scaling value α∗ (dots indicate simulation, curve indicates theory
(8)) decreases for larger input kernels K0 due to accumulation of variance across layers. Other
parameters: σ2

w = 1.25 , σ2
b = 0.05, din = dout = 100, N = 500.

Main result on optimal scaling.

The optimal scaling parameter is approximately given by

α∗ ≈ 1

σw

√√√√(σ2
w (V/2)

2
+ σ2

b

σ2
wK

0 + σ2
b

) 1
L

− 1 . (8)

For the error function we estimate V ≈ 1. Even though this expression builds on certain assumption,
it yields a good approximation for the optimal values α∗ in Figure 4(a), as shown in Figure 4(b).

Based on its derivation, this expression however cannot fully capture the behavior of the signal when
it reaches the non-linear part of the activation-function. Note that this is solely a limitation of our
ansatz for the optimal scaling; the response function itself captures non-linear effects within the
network. Further, the assumption V/2 !

=
√
KL is only an estimate; multiple σ ranges could be

required for optimal signal propagation. Nevertheless, (8) provides a useful approximation to study
scaling properties as its universality across hyperparameters, which we discuss in the next section.
Alternatively, we derive this condition from a maximum entropy argument for the signal distribution
(see Supplementary Material B). A similar maximum entropy argument has been used by Bukva et al.
(2023) to study trainability of feed-forward networks.

Previous works have empirically determined optimal scaling values [28] and their dependence on the
network depth L [6, 7, 27]. In contrast, we here obtain an explicit expression for the optimal scaling
based on a linear approximation and saturation arguments. The connection between saturation effects
and trainability has previously been studied by Bukva et al. (2023), but in feed-forward networks
instead of residual networks and based on a maximum-entropy argument instead of using response
functions.

3.1 Universality of residual scaling parameter

The main strength of the saturation theory (7)-(8) is that it explains the universality of the empirically
found range α∗ ∈ [0.1, 0.3] [23]. The L-th root function dominates the expression in (8), while the
dependence on e.g. the dynamic range V is damped. Therefore, the assumptions made in the previous
paragraph have only a small effect on the result. This intuition can be made concrete by writing (8)
for large depth L as

α∗ ≈
√

1

L

√√√√ 1

σ2
w

log

(
σ2
w (V/2)

2
+ σ2

b

σ2
wK

0 + σ2
b

)
+O

(
L−1

)
. (9)
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Figure 5: Universality of optimal scaling. (a) Output response χout for varying weight variance
σ2
w ∈ [1.0, 1.25, 1.5, 1.75, 2.0] (dark to light) and fixed σ2

b = 0.05. (b) Output response χout for
varying bias variance σ2

b ∈ [0.05, 0.06, 0.07, 0.08, 0.09, 0.1] (dark to light) and fixed σ2
b = 1.75.

(c) Rescaled residual parameter α̂ = ασw and rescaled response χ̂out = χout/σ2
w, out. The curves

collapse, showing how the output response depends on an effective parameter scale. (d) Rescaled
residual parameter α̂ = αα∗(σb, ref)/α

∗(σb) and output response χout. While the maxima coincide,
the saturation theory for the optimal scaling cannot capture the dependence of the output response
χout on the bias variance σ2

b . Other parameters: K0 = 0.05, din = dout = 100, N = 500, L = 30.

Furthermore, the optimal scaling α∗ depends on the ratio between the dynamic range (V/2)
2 and

the input kernel K0. For large input kernels K0 relative to the dynamic range V , the signal moves
into the saturating regime after a few layers. Thus, optimal signal propagation necessitates a smaller
residual scaling α∗ (see Figure 4(c)).

Expression (9) recovers the proportionality of the optimal scaling value with ∝ 1/
√
L reported in

earlier works [6, 7, 27]. While this expression is valid at great depth L as is common for state-of-
the-art architectures, (8) yields a good approximation also for shallower networks. Furthermore, our
framework allows us to analyze the dependence on the other hyperparameters.

We study the effect of weight variance σ2
w and bias variance σ2

b at initialization. While the shape of
the output response χout changes noticeably when varying both parameters, the optimal scaling α∗
shows only a weak dependence (Figure 5(a)-(b)) as expected from (8). By computing an estimate of
the response function based on the linearized expression (7) as ∂KL+1/∂K0 = σ2

w, out (1 +α2σ2
w)L,

we rescale the residual scaling as α̂ = ασw and the response function as χ̂out = χout/σ2
w, out,

yielding a universal behavior irrespective of weight variance σ2
w (Figure 5(c)). Due to the inde-

pendence of the linearized expression of σ2
b , we rescale the latter based on the optimal value as

α̂ = αα∗(σb, ref)/α
∗(σb) (Figure 5(d)). While the full behavior of the output response χout still

contains some nontrivial dependence on σ2
b that would require further analyses of non-linear effects,

rescaling based on saturation theory yields a universal optimal effective scaling α̂∗.

4 Limitations

As discussed in the previous section, the saturation theory yielding the expression for the optimal
scaling (8) cannot fully capture effects that occur once the signal hl reaches the non-linear part of
the activation function. This results from the approximation of the activation function as linear in
the dynamic range. Note that this limitation applies solely to the approximate optimal scaling; the
response function itself captures non-linear effects within the network. Further, the relation between
signal variance and size of dynamic range is an estimate. However, for deep networks (8) depends
only weakly on the latter choice. Overall, despite being an approximation, the optimal scalings
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predicted by the saturation theory match well and are able to explain the universality of the value
range found by Szegedy et al. (2017).

Further, we here focus on the case of a single data sample. For multiple data samples, the full
kernel can be computed straightforwardly using the field-theoretic framework in Supplementary
Material A. For the covariances across data samples, the expression in (4) changes slightly ηl ∝
〈φ′(hl−1)2〉hl−1∼N (0,Kl−1); the structural properties of the expression remain the same. The optimal
scaling α∗(K0) in 8 also varies only slightly across different K0. A simple argument is that the
optimal scaling value for the largest K0 will continue to be a good value for other smaller K0. In
practice, we expect a trade-off between smaller between-class similarities and larger within-class
similarities (measured by K0), leading to some robust optimal scaling ᾱ∗ not yet captured by the
presented theory.

Finally, the presented theory assumes the network parameters θ to be independently and identically
distributed as is the case at network initialization, thus describing the trainability at initialization.
Also this assumption describes the network prior in a setting of Bayesian inference. However,
there is no guarantee that the results continue to hold during training. Nevertheless, there are good
indicators that they may: In the lazy learning regime [4], the network parameters change only slightly,
remaining close to the network initialization. In the feature learning regime, a recent study showed
for feed-forward and convolutional networks that the signal continues to be Gaussian but with kernels
adapted to the data [21]. A change of the signal variance can be mapped back to a change of the
weight and bias variance, which can be well captured by the presented theory.

5 Conclusion

Understanding signal propagation in neural networks is essential for a theory of trainability and
generalization. Regarding these points, residual networks have shown to be superior to feed-forward
network [8, 9]; scaling the residual branches in ResNets further amplifies this effect [23]. We here
derive the response function of residual networks, a measure for the network’s sensitivity to variability
in the input. We show that, in contrast to feed-forward networks, the response function decays to
zero only asymptotically, consequently allowing information to propagate to very deep layers in line
with Yang & Schoenholz (2017). Further, we show that signal propagation in ResNets is optimal
when the signal distribution utilizes the whole dynamic range of the activation function. Beyond this
range, information is lost due to saturation effects. We relate the width of the signal distribution to
the scaling parameter of the residual branch, allowing us to identify the optimal scaling parameter;
an open question until now. Finally, we are able to explain the universality of empirically found
optimal values. Thereby, this work sheds light on the interplay between signal propagation, saturation
effects and signal scales in residual networks. Furthermore, the field-theoretic framework in the
Supplementary Material allows computing finite-size properties of residual networks. We leave this
point for future work.
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Supplementary Material
A Field theoretical approach to ResNets

We here calculate the network prior p(y|x) for the residual network model defined in Eq. (1). This
derivation uses the same approach as employed in Segadlo et al. (2022) to study deep feed-forward
and recurrent networks. The network prior is defined as the probability of an output y given an input
x marginalized over the distribution of network parameters θ

p(y|x) =

∫
dθ p(y|x, θ) p(θ). (S1)

Given fixed network parameters θ, the probability p(y|x, θ) is given by enforcing the network model
with Dirac δ-distributions as

p(y|x, θ) =

∫
dh0· · ·

∫
dhL δ(y −W outφ(hL)− bout)

× δ(hl − hl−1 − αW lφ(hl−1)− αbl) (S2)

× δ(h0 −W inx− bin).

A.1 Marginalization over network parameters

The marginalization over the network parameters is given by

p(y|x) =

∫
dh0· · ·

∫
dhL 〈δ(y −W outφ(hL)− bout)〉{W out, bout}

× 〈δ(hl − hl−1 − αW lφ(hl−1)− αbl)〉{W l, bl} (S3)

× 〈δ(h0 −W inx− bin)〉{W in, bin},

where 〈〉{W,b} refers to the expectation value over the statistics of weightsW and biases b. We rewrite
the Dirac δ-distributions using the Fourier representation

δ(h) =

∫
dh̃ exp

(
h̃Th

)
(S4)

with scalar product h̃Th =
∑N
i=1 h̃ihi, integration measure

∫
dh̃ =

∏
k

∫
iR

dh̃k

2πi and h̃ the conjugate
variable to h. This yields

p(y|x) =

∫
dỹ

∫
Dh̃
∫
Dh

〈
exp

(
ỹT(y −W outφ(hL)− bout)

)〉
{W out, bout}

×
〈

exp
((
h̃l
)T

(hl − hl−1 − αW lφ(hl−1)− αbl)
)〉
{W l, bl}

(S5)

×
〈

exp
((
h̃0
)T

(h0 −W inx− bin)
)〉
{W in, bin}

,

where we write
∫
Dh =

∏L
l=0

∫
dhl and

∫
Dh̃ =

∏L
l=0

∫
dh̃l for brevity. Since the net-

work parameters θ are independently distributed, the integrals decouple and only integrals of
the form

∫
dθk p(θk) exp

(
zθk
)

appear, which can be solved exactly for θk ∼ N (0, σ2) yielding
exp

(
1
2σ

2z2
)
.

12



We rewrite the resulting terms as
∑
mn

[
ỹmφ(hLn)

]2
= ỹTỹ φ(hL)Tφ(hL)T and thus get

p(y|x) =

∫
dỹ

∫
Dh̃
∫
Dh exp

(
ỹTy +

1

2

σ2
w, out

N
ỹTỹ φ(hL)Tφ(hL) +

1

2
σ2
b, outỹ

Tỹ

)

× exp

(
L∑
l=1

[
h̃l
]T [

hl − hl−1
])

× exp

(
L∑
l=1

(
1

2
α2σ

2
w

N

[
h̃l
]T
h̃l φ(hl−1)Tφ(hl−1) +

1

2
α2σ2

b

[
h̃l
]T
h̃l
))

× exp

([
h̃0
]T
h0 +

1

2

σ2
w, in

din

[
h̃0
]T
h̃0 xTx+

1

2
σ2
b, in

[
h̃0
]T
h̃0

)

=:

∫
dỹ

∫
Dh̃
∫
Dh exp

(
S(y, ỹ, h, h̃|x)

)
.

The exponent S of the integrand, commonly called the action, is given by

S(y, ỹ, h, h̃|x) = Sin(h0, h̃0|x) + Snet(h, h̃) + Sout(y, ỹ|hL), (S6)

where we distinguish between the readin layer

Sin(h0, h̃0|x) :=
[
h̃0
]T
h0 +

1

2

σ2
w, in

din

[
h̃0
]T
h̃0 xTx+

1

2
σ2
b, in

[
h̃0
]T
h̃0, (S7)

the inner layers of the network with residual connectivity

Snet(h, h̃) :=

L∑
l=1

[
h̃l
]T [

hl − hl−1
]

+
1

2
α2σ

2
w

N

[
h̃l
]T
h̃l φ(hl−1)Tφ(hl−1) +

1

2
α2σ2

b

[
h̃l
]T
h̃l,

(S8)
and the readout layer

Sout(y, ỹ|hL) := ỹTy +
1

2

σ2
w, out

N
ỹTỹ φ(hL)Tφ(hL) +

1

2
σ2
b, outỹ

Tỹ. (S9)

In contrast to feed-forward networks, the conjugate variable h̃l of layer l does not only couple to the
signal hl of layer l, but also to the signal hl−1 of the previous layer l− 1. This coupling across layers
results from the skip connections in residual networks. The interdependence between layers induced
by the coupling prohibits the marginalization over the intermediate signals hl in a forward manner as
in feed-forward networks.

A.2 Auxiliary variables

Quadratic terms in h and h̃ can be solved as Gaussian integrals. However, in (S7)-(S9) terms

proportional to ∝
[
h̃l
]T
h̃l φ(hl−1)Tφ(hl−1) appear, which are at least quartic in h and h̃. To treat

these terms, we introduce auxiliary variables

Cl :=


σ2
w, in
din

xTx+ σ2
b, in l = 0,

α2 σ
2
w

N φ(hl−1)Tφ(hl−1) + α2σ2
b 1 ≤ l ≤ L,

σ2
w, out
N φ(hL)Tφ(hL) + σ2

b, out l = L+ 1.

For wide networks (N � 1), we expect the empirical average 1
N

∑N
i=1 φ(hl−1i )2 to concentrate

around its mean value. Based on this intuition, we aim to rewrite the network prior p(y|x) in terms of
these scalar variables.
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We enforce these definitions with Dirac δ-distributions as in (S2), yielding

p(y|x) =

∫
dỹ

∫
Dh̃
∫
Dh
∫
DC

∫
DC̃ exp

(
ỹTy +

1

2
CL+1ỹTỹ

)
× exp

(
L∑
l=1

[[
h̃l
]T [

hl − hl−1
]

+
1

2
Cl
[
h̃l
]T
h̃l
])

× exp

([
h̃0
]T
h0 +

1

2
C0
[
h̃0
]T
h̃0
)

× exp

(
−N

L+1∑
l=0

νl C
l C̃l + α2σ2

w

L∑
l=1

C̃lφ(hl−1)Tφ(hl−1) +Nα2σ2
b

L∑
l=1

C̃l

)
× exp

(
σ2
w, outC̃

L+1φ(hL)Tφ(hL) +Nσ2
b, outC̃

L+1
)

× exp
(
σ2
w, inC̃

0xTx+ dinσ
2
b, inC̃

0
)
,

where
∫
DC =

∏L+1
l=0

∫
R dCl and

∫
DC̃ =

∏L+1
l=0

∫
iR

dC̃l

2πi and νl = 1 + δ0l (din/N − 1) .

Since the scalar variables C and C̃ only couple to sums of h̃ and φ(h) over all neuron indices, all
components of h and h̃ are identically distributed and we can rewrite the expression as

p(y|x) =

∫
dỹ

∫
Dh̃
∫
Dh
∫
DC

∫
DC̃ exp

(
ỹTy +

1

2
CL+1ỹTỹ

)
× exp

(
N

L∑
l=1

[
h̃l
[
hl − hl−1

]
+

1

2
Cl
[
h̃l
]2])

× exp

(
N

[
h̃0h0 +

1

2
C0
[
h̃0
]2])

× exp

(
−N

L+1∑
l=0

νl C
l C̃l +Nα2σ2

w

L∑
l=1

C̃lφ(hl−1)φ(hl−1) +Nα2σ2
b

L∑
l=1

C̃l

)
× exp

(
Nσ2

w, outC̃
L+1φ(hL)φ(hL) +Nσ2

b, outC̃
L+1

)
× exp

(
σ2
w, inC̃

0xTx+ dinσ
2
b, inC̃

0
)
,

where hl and h̃l now refer to scalar quantities. We move the integrals over the variables h and h̃ to
the exponent and reorder the terms as

p(y|x) =

∫
dỹ

∫
DC

∫
DC̃ exp

(
ỹTy +

1

2
CL+1ỹTỹ

)
× exp

(
−N

L+1∑
l=0

νl C
l C̃l

)

× exp

[
N ln

L∏
l=1

∫
dhl

∫
dh̃l exp

(
h̃l
[
hl − hl−1

]
+

1

2
Cl
[
h̃l
]2)

× exp

(
α2σ2

wC̃
l φ(hl−1)φ(hl−1) + α2σ2

b

L∑
l=1

C̃l

)
× exp

(
σ2
w, outC̃

L+1φ(hL)φ(hL) + σ2
b, outC̃

L+1
)

×
∫

dh0
∫

dh̃0 exp

(
h̃0h0 +

1

2
C0
[
h̃0
]2)

× exp

(
σ2
w, in

N
C̃0xTx+ ν0σ

2
b, inC̃

0

)]
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=

∫
dỹ

〈
exp

(
ỹTy +

1

2
CL+1ỹTỹ

)〉
C,C̃

,

where the auxiliary variables are distributed as (C, C̃) ∼ exp
(
Saux(C, C̃)

)
with

Saux(C, C̃) := −N
L+1∑
l=0

νl C
l C̃l +NWaux(C̃|C),

Waux(C̃|C) := ln

L∏
l=1

∫
dhl

∫
dh̃l exp

(
h̃l
[
hl − hl−1

]
+

1

2
Cl
[
h̃l
]2)

× exp

(
α2σ2

wC̃
l φ(hl−1)φ(hl−1) + α2σ2

b

L∑
l=1

C̃l

)
× exp

(
σ2
w, outC̃

L+1φ(hL)φ(hL) + σ2
b, outC̃

L+1
)

×
∫

dh0
∫

dh̃0 exp

(
h̃0h0 +

1

2
C0
[
h̃0
]2)

× exp

(
σ2
w, in

N
C̃0xTx+ ν0σ

2
b, inC̃

0

)
.

A.3 Saddle-point approximation

The auxiliary action Saux scales with the network width N . In the limit of infinite width (N →∞),
we can thus perform a saddle-point approximation to evaluate integrals of the form∫

DC
∫
DC̃ f(C, C̃) exp

(
Saux(C, C̃)

) N→∞
= f(C̄, ¯̃C),

where C̄ and ¯̃C are the saddle points of the auxiliary action Saux.

We compute these using the conditions

∂Saux

∂C

!
= 0,

∂Saux

∂C̃

!
= 0,

and get

C̄l =


σ2
w, in
din

xTx+ σ2
b, in l = 0,

α2σ2
w〈φ(hl−1)φ(hl−1)〉p + α2σ2

b 1 ≤ l ≤ L,
σ2
w, out〈φ(hL)φ(hL)〉p + σ2

b, out l = L+ 1,

¯̃Cl = 0 l = 0, . . . , L+ 1,

where

〈. . . 〉p =

L∏
l=1

∫
dhl

∫
dh̃l . . . exp

(
h̃l
[
hl − hl−1

]
+

1

2
C̄l
[
h̃l
]2)

×
∫

dh0
∫

dh̃0 exp

(
h̃0h0 +

1

2
C̄0
[
h̃0
]2)

.

For brevity, we also include C̄0 = C0 here. The average is computed self-consistently with respect
to C̄l.

15



By using the residual f l = hl − hl−1 for 1 ≤ l ≤ L, we rewrite the appearing average as

〈. . . 〉p =

L∏
l=1

∫
df l

∫
dh̃l . . . exp

(
h̃lf l +

1

2
C̄l
[
h̃l
]2)

(S10)

×
∫

dh0
∫

dh̃0 exp

(
h̃0h0 +

1

2
C̄0
[
h̃0
]2)

=

L∏
l=1

∫
df l . . .

1√
2πC̄l

exp

(
−1

2

[
C̄l
]−1 [

f l
]2)

×
∫

dh0
1√

2πC̄0
exp

(
−1

2

[
C̄0
]−1 [

h0
]2)

.

From the latter expression follows that the residuals f l for 1 ≤ l ≤ L and h0 are Gaussian distributed
with covariance C̄lI in the saddle-point approximation. Since the residuals f l are independent
Gaussians, the signal hl is also Gaussian distributed with covariance KlI =

∑l
k=0 C̄

kI.
Thus, we obtain the result in Eq. (3) in the main text

C̄l = α2σ2
w〈φ(hl−1)φ(hl−1)〉hl−1∼N (0,Kl−1) + α2σ2

b , for 1 ≤ l ≤ L,

Kl =


σ2
w, in
din

xTx+ σ2
b, in l = 0,∑l

k=0 C̄
k 1 ≤ l ≤ L,

σ2
w, out〈φ(hL)φ(hL)〉hL∼N (0,KL) + σ2

b, out l = L+ 1.

We recover the known GP result for the diagonal kernel entries as Kl = Kl−1 + C̄l [10, 24, 2].

A.4 Next-to-leading order correction

We compute corrections to the saddle-point approximation above. For finite-size networks, the
residual kernels Cl fluctuate around the above saddle-point value. In lowest-order approximation, we
describes these fluctuations as Gaussian. We obtain these by computing the Hessian of the action
at the saddle point. Hence, all following averages are with respect to the measure 〈. . . 〉p defined in
(S10). The diagonal terms are given by

∂2

∂Cl∂Ck
Saux = 0 ,

∂2

∂C̃l∂C̃k
Saux = Nσ4

w 1l>01k>0 〈φ(hl−1)φ(hl−1), φ(hk−1)φ(hk−1)〉c,p

×


α4 k, l 6= L+ 1,

α2 k 6= l = L+ 1 ∨ l 6= k = L+ 1,

1 else,

where 1l>0 denotes the indicator function and we denote by 〈. . . 〉c connected correlations defined as

〈φ(hl−1)φ(hl−1), φ(hk−1)φ(hk−1)〉c,p = 〈φ(hl−1)φ(hl−1)φ(hk−1)φ(hk−1)〉p
− 〈φ(hl−1)φ(hl−1)〉p 〈φ(hk−1)φ(hk−1)〉p.

For the off-diagonal terms, we have

∂2

∂Cl∂C̃k
Saux = −Nνlδkl +N 1k>0 σ

2
w

∂

∂Cl
〈φ(hk−1)2〉hk−1∼N (0,Kk−1)

×
{
α2 k ≤ L
1 k = L+ 1

= −Nνlδkl +N 1k>0 σ
2
w

∂

∂Kk−1 〈φ(hk−1)2〉hk−1∼N (0,Kk−1)

∂

∂Cl
Kk−1

×
{
α2 k ≤ L
1 k = L+ 1
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= −Nνlδkl +N 1k>0 σ
2
w〈φ′(hk−1)2 + φ′′(hk−1)φ(hk−1)〉hk−1∼N (0,Kk−1) 1k>l

(S11)

×
{
α2 k ≤ L
1 k = L+ 1

,

where we used Price’s theorem from the second to third line. The condition k > l enforced by the
indicator function 1k>l results from the term ∂

∂ClK
k−1, because Kk−1 only depends on the Cl with

l < k.

Altogether, we get

Hess(Saux) =

(
∂2

∂C2Saux
∂2

∂C ∂C̃
Saux

∂2

∂C̃ ∂C
Saux

∂2

∂C̃2
Saux

)

=:

(
S11 S12
S21 S22

)
.

We obtain the Gaussian fluctuations of the fields Cl and C̃l by taking the negative inverse of the
Hessian, also called the propagator in field theory

∆ = −Hess(Saux)−1

=:

(
∆11 ∆12

∆21 ∆22

)
.

By using the block structure and the fact that S11 = 0, we have

∆11 = ∆12 S22 ∆21, (S12)

∆12 = −S−121 , (S13)
∆22 = 0. (S14)

Since the off-diagonal block matrix S21 is a lower triangular matrix, its inverse can be computed
using forward propagation

∆lm
12 = N−1ν−1l δlm +H(l)σ2

w〈φ′(hl−1)2 + φ′′(hl−1)φ(hl−1〉hl−1∼N (0,Kl−1)

l−1∑
k=0

∆km
12

×
{
α2 k ≤ L
1 k = L+ 1

.

A.5 Response function

The propagator ∆ gives the covariances of the fields Cl and C̃l as(
∆11 ∆12

∆21 ∆22

)
=

(
Cov(C,C) Cov(C, C̃)
Cov(C̃, C) Cov(C̃, C̃)

)
.

Since the auxiliary fields C̃l represent changes in the fields Cl, the off-diagonal term ∆lm
12 =

Cov
(
Cl, C̃m

)
can be understood as the response of the network residual in layer l to a perturbation

of the residual in layer m. Due to the network architecture, any response can only propagate forward
in the network, which is reflected in the term 1k>l in (S11).

For signal propagation it is most relevant how varying inputs x, leading to varying input kernels
K0, are propagated through the network. This corresponds to ∆l0

12. In the main text, we refer to this
quantity as the response function ηl. Here, we derive it as a O(N−1) correction to the NNGP result.
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A.6 Comparison to feed-forward networks

Segadlo et al. (2022) study the following feed-forward architecture

h0 = W inx+ bin,

hl = W lφ(hl−1) + bl l = 1, . . . , L, (S15)

y = W outφ(hL) + bout.

In comparison, the network model considered here adds skip connections as well as a scaling α of
the residual branch. For direct comparisons, we can set the latter to α = 1.

In contrast to the results for FFNets, the kernel Kl in layer l depends explicitly not only on the kernel
of the previous layer but on all preceding layers (see [20] Section 4.1). This property directly results
from the skip connections in residual networks. Thereby, the response function in layer l retains
information from all preceding layers, such that information can propagate to deeper network layers
as shown in Fig. 2. Accordingly, the variances ∆11 of the fields Cl in (S12) also yield different
values. Since we here focus on properties of the response function, we leave the effect of fluctuations
of the fields Cl themselves for future work.

B Maximum entropy condition for optimal scaling

We here derive an alternative condition for optimal signal variance, building on Bukva et al. (2023)
who proposed this method to study trainability in feed-forward networks. Their conjecture is
that networks with internal signal distributions that are approximately uniform, or put differently
maximally entropic, are more expressive.

For wide networks, the signal distribution of internal layers is approximately Gaussian

p(h;σ2) =
1√

2πσ2
exp

(
− 1

2σ2
h2
)
,

taking only a scalar component here as these are independent of one another.

We here focus on the readout layer. The distribution of the post-activation z = φ(h) is then

p(z;σ2) =
1√

2πσ2φ′(φ−1(x))
exp

(
− 1

2σ2
φ−1(z)2

)
.

For φ = erf, the post-activation is bounded by z ∈ [−1, 1]. Thus, we compute the Kullback-Leibler
divergence between the distribution of the post-activation and a uniform distribution on that interval

DKL(puni|pφ) =

∫ 1

−1
dz puni(z) [ln puni(z)− ln pφ(z)]

=

∫ 1

−1
dz

1

2
ln

(
1

2

)
+

1

2

1

2σ2
φ−1(z)2 +

1

2
ln
(√

2πσφ′(φ−1(z))
)

= ln

(
1

2

)
+

1

2

∫ 1

−1
dz

1

2σ2
φ−1(z)2 + ln

(√
2πσ

2√
π

exp(−φ−1(z)2)

)
= ln

(
1

2

)
+ ln(

√
8σ) +

1

2

∫ 1

−1
dz

(
1

2σ2
− 1

)
φ−1(z)2

= ln

(√
8

2

)
+ ln(σ) +

1

2

(
1

2σ2
− 1

)∫ ∞
−∞

dhφ−1(φ(h))2 φ′(h)

= ln
(√

2
)

+
1

2
ln(σ2) +

1

2

(
1

2σ2
− 1

)∫ ∞
−∞

dhh2
2√
π

exp(−h2)

= ln
(√

2
)

+
1

2
ln(σ2) +

1

2

(
1

2σ2
− 1

)∫ ∞
−∞

dhh2
1√
2π

exp(−1

2
h2)

= ln
(√

2
)

+
1

2
ln(σ2) +

1

2

(
1

2σ2
− 1

)
.
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Maximizing the Kullback-Leibler divergence between these amounts to

0
!
=

∂

∂σ2
DKL(puni|pφ) =

1

σ2
− 1

4

1

σ4
,

yielding as the condition for the signal variance before the readout layer

σ2 !
=

1

4
.

This condition is equivalent to the one in the Section 3 under the assumption that the dynamic range
of the error function is given by V = 1.

C Additional plots

C.1 Decay of response function
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Figure 6: Log-plot (a) and log-log-plot (b) of the response function ηl for a residual network of depth
L = 20. Dots represent simulations over 102 input samples and 103 network initializations, solid
curves show theory values. The decay of the response function is sub-exponential (a). In later layers,
the decay follows a power law (b). Other parameters: σ2

w, in = σ2
w = σ2

w, out = 1.2, σ2
b, in = σ2

b =

σ2
b, out = 0.2, din = dout = 100, N = 500, α = 1.
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