001     1010678
005     20240625095120.0
024 7 _ |a 10.1126/sciadv.adg9709
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03186
|2 datacite_doi
024 7 _ |a 37611110
|2 pmid
024 7 _ |a WOS:001053144500018
|2 WOS
037 _ _ |a FZJ-2023-03186
082 _ _ |a 500
100 1 _ |a Zhang, Jin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR
260 _ _ |a Washington, DC [u.a.]
|c 2023
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694161567_5294
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state nuclear magnetic resonance (ssNMR) methods can probe the motions of membrane proteins in liposomes at the atomic level and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we report our study on the fluoride channel Fluc-Ec1 in phospholipid bilayers based on ssNMR and molecular dynamics simulations. Previously unidentified fluoride binding sites in the aqueous vestibules were experimentally verified by 19F-detected ssNMR. One of the two fluoride binding sites in the polar track was identified as a water molecule by 1H-detected ssNMR. Meanwhile, a dynamic hotspot at loop 1 was observed by comparing the spectra of wild-type Fluc-Ec1 in variant buffer conditions or with its mutants. Therefore, we propose that fluoride conduction in the Fluc channel occurs via a “water-mediated knock-on” permeation mechanism and that loop 1 is a key molecular determinant for channel gating.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a DFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - (291198853)
|0 G:(GEPRIS)291198853
|c 291198853
|x 1
536 _ _ |a DFG project 329460521 - Protonentransfer und Substraterkennung in SLC17-Transportern (329460521)
|0 G:(GEPRIS)329460521
|c 329460521
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Song, Dan
|0 0000-0003-3686-9042
|b 1
700 1 _ |a Schackert, Florian Karl
|0 P:(DE-Juel1)180424
|b 2
700 1 _ |a Li, Juan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Xiang, Shengqi
|0 0000-0002-6874-4925
|b 4
700 1 _ |a Tian, Changlin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gong, Weimin
|0 0000-0002-6723-1298
|b 6
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 7
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 8
700 1 _ |a Shi, Chaowei
|0 0000-0002-0024-1096
|b 9
|e Corresponding author
773 _ _ |a 10.1126/sciadv.adg9709
|g Vol. 9, no. 34, p. eadg9709
|0 PERI:(DE-600)2810933-8
|n 34
|p eadg9709
|t Science advances
|v 9
|y 2023
|x 2375-2548
856 4 _ |u https://juser.fz-juelich.de/record/1010678/files/sciadv.adg9709.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010678
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180424
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)169976
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-09-20T13:50:30Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-09-20T13:50:30Z
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI ADV : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-09-20T13:50:30Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI ADV : 2022
|d 2023-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21