| Home > Publications database > Statistical temporal pattern extraction by neuronal architecture > print |
| 001 | 1010690 | ||
| 005 | 20240313103123.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevResearch.5.033177 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-03196 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001074650500002 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-03196 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Nestler, Sandra |0 P:(DE-Juel1)174585 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Statistical temporal pattern extraction by neuronal architecture |
| 260 | _ | _ | |a College Park, MD |c 2023 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1707829608_12360 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Neuronal systems need to process temporal signals. Here, we show how higher-order temporal (co)fluctuationscan be employed to represent and process information. Concretely, we demonstrate that a simple biologicallyinspired feedforward neuronal model can extract information from up to the third-order cumulant to performtime series classification. This model relies on a weighted linear summation of synaptic inputs followed bya nonlinear gain function. Training both the synaptic weights and the nonlinear gain function exposes how thenonlinearity allows for the transfer of higher-order correlations to the mean, which in turn enables the synergisticuse of information encoded in multiple cumulants to maximize the classification accuracy. The approach isdemonstrated both on synthetic and real-world datasets of multivariate time series. Moreover, we show thatthe biologically inspired architecture makes better use of the number of trainable parameters than a classicalmachine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired withdedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulantsof temporal (co)fluctuations. |
| 536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 1 |
| 536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 2 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
| 536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 4 |
| 536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 5 |
| 536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 6 |
| 536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 7 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 1 |u fzj |
| 700 | 1 | _ | |a Gilson, Matthieu |0 P:(DE-Juel1)184621 |b 2 |
| 773 | _ | _ | |a 10.1103/PhysRevResearch.5.033177 |g Vol. 5, no. 3, p. 033177 |0 PERI:(DE-600)3004165-X |n 3 |p 033177 |t Physical review research |v 5 |y 2023 |x 2643-1564 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/PhysRevResearch.5.033177.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.gif?subformat=icon |x icon |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-1440 |x icon-1440 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-180 |x icon-180 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-640 |x icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1010690 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174585 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144806 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 2 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-29 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-29 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV RES : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|