001     1010690
005     20240313103123.0
024 7 _ |a 10.1103/PhysRevResearch.5.033177
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03196
|2 datacite_doi
024 7 _ |a WOS:001074650500002
|2 WOS
037 _ _ |a FZJ-2023-03196
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Nestler, Sandra
|0 P:(DE-Juel1)174585
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Statistical temporal pattern extraction by neuronal architecture
260 _ _ |a College Park, MD
|c 2023
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707829608_12360
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuronal systems need to process temporal signals. Here, we show how higher-order temporal (co)fluctuationscan be employed to represent and process information. Concretely, we demonstrate that a simple biologicallyinspired feedforward neuronal model can extract information from up to the third-order cumulant to performtime series classification. This model relies on a weighted linear summation of synaptic inputs followed bya nonlinear gain function. Training both the synaptic weights and the nonlinear gain function exposes how thenonlinearity allows for the transfer of higher-order correlations to the mean, which in turn enables the synergisticuse of information encoded in multiple cumulants to maximize the classification accuracy. The approach isdemonstrated both on synthetic and real-world datasets of multivariate time series. Moreover, we show thatthe biologically inspired architecture makes better use of the number of trainable parameters than a classicalmachine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired withdedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulantsof temporal (co)fluctuations.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 2
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 4
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 5
536 _ _ |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)
|0 G:(DE-Juel-1)PF-JARA-SDS005
|c PF-JARA-SDS005
|x 6
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 7
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 1
|u fzj
700 1 _ |a Gilson, Matthieu
|0 P:(DE-Juel1)184621
|b 2
773 _ _ |a 10.1103/PhysRevResearch.5.033177
|g Vol. 5, no. 3, p. 033177
|0 PERI:(DE-600)3004165-X
|n 3
|p 033177
|t Physical review research
|v 5
|y 2023
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/PhysRevResearch.5.033177.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1010690/files/INV_23_AUG_011700.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:1010690
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174585
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 2
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21