001     10121
005     20240709094329.0
024 7 _ |2 DOI
|a 10.1016/j.memsci.2010.04.012
024 7 _ |2 WOS
|a WOS:000279953300017
037 _ _ |a PreJuSER-10121
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Engineering, Chemical
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |a Czyperek, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)129600
245 _ _ |a Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2010
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Membrane Science
|x 0376-7388
|0 3536
|y 1
|v 359
500 _ _ |a Financial support from the Helmholtz Association of German Research Centres (Initiative and Networking Fund) through the MEM-BRAIN Helmholtz Alliance is gratefully acknowledged.
520 _ _ |a The objective of the "MEM-BRAIN" project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O-2 or H-2, for the three CO2 capture process routes in power plants, thus enabling CO2 to be captured with high-purity in a readily condensable form. For the pre-combustion process, we have developed ceramic microporous membranes that operate at intermediate temperatures (<= 400 degrees C) for H-2/CO2 separation. For the oxyfuel process, we have developed dense ceramic mixed oxygen ionic-electronic conducting membranes that operate at 800-1000 degrees C for O-2/N-2 separation. The perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF5582) was taken as the reference material for this application. For the post-combustion process, polymeric and organic/inorganic hybrid membranes have been developed for CO2/N-2 separation at temperatures up to 200 degrees C. In addition to the development of membranes, we consider the integration of the membranes into power plants by modelling and optimization. Finally, specific technical, economic and environmental properties of CO2 capture as a component in a CCS process chain are assessed, analysing the energy supply system as a whole. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |a Nachhaltige Entwicklung und Technik
|c P26
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK408
|x 0
536 _ _ |a Rationelle Energieumwandlung
|c P12
|0 G:(DE-Juel1)FUEK402
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Zero-emission power plants
653 2 0 |2 Author
|a Gas separation
653 2 0 |2 Author
|a Ceramic membrane
653 2 0 |2 Author
|a Polymeric membrane
653 2 0 |2 Author
|a Process engineering
653 2 0 |2 Author
|a System integration
653 2 0 |2 Author
|a Energy systems analysis
700 1 _ |a Zapp, P.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5094
700 1 _ |a Bouwmeester, H. J. M.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB12702
700 1 _ |a Modigell, M.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB92818
700 1 _ |a Ebert, K.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB21496
700 1 _ |a Voigt, I.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB92819
700 1 _ |a Meulenberg, W. A.
|b 6
|u FZJ
|0 P:(DE-Juel1)129637
700 1 _ |a Singheiser, L.
|b 7
|u FZJ
|0 P:(DE-Juel1)129795
700 1 _ |a Stöver, D.
|b 8
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1016/j.memsci.2010.04.012
|g Vol. 359
|q 359
|0 PERI:(DE-600)1491419-0
|t Journal of membrane science
|v 359
|y 2010
|x 0376-7388
856 7 _ |u http://dx.doi.org/10.1016/j.memsci.2010.04.012
909 C O |o oai:juser.fz-juelich.de:10121
|p VDB
913 1 _ |k P26
|v Nachhaltige Entwicklung und Technik
|l Nachhaltige Entwicklung und Technik
|b Umwelt
|z fortgesetzt als P47
|0 G:(DE-Juel1)FUEK408
|x 0
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 1
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems Addressing Issues of Energy Efficiency and Energy Security
|x 1
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 30.09.2010
|g IEF
|k IEF-STE
|l Systemforschung und Technologische Entwicklung
|0 I:(DE-Juel1)VDB815
|x 0
920 1 _ |d 30.09.2010
|g IEF
|k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|0 I:(DE-Juel1)VDB809
|x 1
920 1 _ |d 30.09.2010
|g IEF
|k IEF-2
|l Werkstoffstruktur und Eigenschaften
|0 I:(DE-Juel1)VDB810
|x 2
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 3
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 4
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|g IEK
|x 5
970 _ _ |a VDB:(DE-Juel1)120296
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-STE-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-STE-20101013
981 _ _ |a I:(DE-82)080011
981 _ _ |a I:(DE-82)080012
981 _ _ |a I:(DE-Juel1)VDB815


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21