001014219 001__ 1014219
001014219 005__ 20231215104829.0
001014219 0247_ $$2doi$$a10.3389/frwa.2023.1178114
001014219 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03203
001014219 0247_ $$2WOS$$aWOS:001002189600001
001014219 037__ $$aFZJ-2023-03203
001014219 082__ $$a333.7
001014219 1001_ $$0P:(DE-Juel1)186601$$aPatakchi Yousefi, Kaveh$$b0$$eCorresponding author
001014219 245__ $$aDeep learning of model- and reanalysis-based precipitation and pressure mismatches over Europe
001014219 260__ $$aLausanne$$bFrontiers Media$$c2023
001014219 3367_ $$2DRIVER$$aarticle
001014219 3367_ $$2DataCite$$aOutput Types/Journal article
001014219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1694589483_18147
001014219 3367_ $$2BibTeX$$aARTICLE
001014219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014219 3367_ $$00$$2EndNote$$aJournal Article
001014219 520__ $$aPhysically based numerical weather prediction and climate models provide useful information for a large number of end users, such as flood forecasters, water resource managers, and farmers. However, due to model uncertainties arising from, e.g., initial value and model errors, the simulation results do not match the in situ or remotely sensed observations to arbitrary accuracy. Merging model-based data with observations yield promising results benefiting simultaneously from the information content of the model results and observations. Machine learning (ML) and/or deep learning (DL) methods have been shown to be useful tools in closing the gap between models and observations due to the capacity in the representation of the non-linear space–time correlation structure. This study focused on using UNet encoder–decoder convolutional neural networks (CNNs) for extracting spatiotemporal features from model simulations for predicting the actual mismatches (errors) between the simulation results and a reference data set. Here, the climate simulations over Europe from the Terrestrial Systems Modeling Platform (TSMP) were used as input to the CNN. The COSMO-REA6 reanalysis data were used as a reference. The proposed merging framework was applied to mismatches in precipitation and surface pressure representing more and less chaotic variables, respectively. The merged data show a strong average improvement in mean error (~ 47%), correlation coefficient (~ 37%), and root mean square error (~22%). To highlight the performance of the DL-based method, the results were compared with the results obtained by a baseline method, quantile mapping. The proposed DL-based merging methodology can be used either during the simulation to correct model forecast output online or in a post-processing step, for downstream impact applications, such as flood forecasting, water resources management, and agriculture.
001014219 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001014219 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014219 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b1
001014219 773__ $$0PERI:(DE-600)2986721-6$$a10.3389/frwa.2023.1178114$$gVol. 5, p. 1178114$$p1178114$$tFrontiers in water$$v5$$x2624-9375$$y2023
001014219 8564_ $$uhttps://juser.fz-juelich.de/record/1014219/files/frwa-05-1178114.pdf$$yOpenAccess
001014219 8767_ $$d2023-10-06$$eAPC$$jDeposit$$z1071 $
001014219 909CO $$ooai:juser.fz-juelich.de:1014219$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001014219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186601$$aForschungszentrum Jülich$$b0$$kFZJ
001014219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b1$$kFZJ
001014219 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001014219 9141_ $$y2023
001014219 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
001014219 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014219 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-03T10:51:43Z
001014219 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-03T10:51:43Z
001014219 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-09
001014219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014219 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-09
001014219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-03T10:51:43Z
001014219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT WATER : 2022$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
001014219 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001014219 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014219 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001014219 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001014219 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001014219 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001014219 9801_ $$aFullTexts
001014219 980__ $$ajournal
001014219 980__ $$aVDB
001014219 980__ $$aUNRESTRICTED
001014219 980__ $$aI:(DE-Juel1)IBG-3-20101118
001014219 980__ $$aAPC