001     1014219
005     20231215104829.0
024 7 _ |a 10.3389/frwa.2023.1178114
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03203
|2 datacite_doi
024 7 _ |a WOS:001002189600001
|2 WOS
037 _ _ |a FZJ-2023-03203
082 _ _ |a 333.7
100 1 _ |a Patakchi Yousefi, Kaveh
|0 P:(DE-Juel1)186601
|b 0
|e Corresponding author
245 _ _ |a Deep learning of model- and reanalysis-based precipitation and pressure mismatches over Europe
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1694589483_18147
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physically based numerical weather prediction and climate models provide useful information for a large number of end users, such as flood forecasters, water resource managers, and farmers. However, due to model uncertainties arising from, e.g., initial value and model errors, the simulation results do not match the in situ or remotely sensed observations to arbitrary accuracy. Merging model-based data with observations yield promising results benefiting simultaneously from the information content of the model results and observations. Machine learning (ML) and/or deep learning (DL) methods have been shown to be useful tools in closing the gap between models and observations due to the capacity in the representation of the non-linear space–time correlation structure. This study focused on using UNet encoder–decoder convolutional neural networks (CNNs) for extracting spatiotemporal features from model simulations for predicting the actual mismatches (errors) between the simulation results and a reference data set. Here, the climate simulations over Europe from the Terrestrial Systems Modeling Platform (TSMP) were used as input to the CNN. The COSMO-REA6 reanalysis data were used as a reference. The proposed merging framework was applied to mismatches in precipitation and surface pressure representing more and less chaotic variables, respectively. The merged data show a strong average improvement in mean error (~ 47%), correlation coefficient (~ 37%), and root mean square error (~22%). To highlight the performance of the DL-based method, the results were compared with the results obtained by a baseline method, quantile mapping. The proposed DL-based merging methodology can be used either during the simulation to correct model forecast output online or in a post-processing step, for downstream impact applications, such as flood forecasting, water resources management, and agriculture.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 1
773 _ _ |a 10.3389/frwa.2023.1178114
|g Vol. 5, p. 1178114
|0 PERI:(DE-600)2986721-6
|p 1178114
|t Frontiers in water
|v 5
|y 2023
|x 2624-9375
856 4 _ |u https://juser.fz-juelich.de/record/1014219/files/frwa-05-1178114.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014219
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186601
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-03T10:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-03T10:51:43Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-03T10:51:43Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT WATER : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21