001014225 001__ 1014225
001014225 005__ 20240313103116.0
001014225 0247_ $$2doi$$a10.1038/s41598-023-37604-0
001014225 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03209
001014225 0247_ $$2pmid$$a37386240
001014225 0247_ $$2WOS$$aWOS:001022752100016
001014225 037__ $$aFZJ-2023-03209
001014225 082__ $$a600
001014225 1001_ $$0P:(DE-Juel1)176595$$aSchulte to Brinke, Tobias$$b0$$eCorresponding author$$ufzj
001014225 245__ $$aA refined information processing capacity metric allows an in-depth analysis of memory and nonlinearity trade-offs in neurocomputational systems
001014225 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2023
001014225 3367_ $$2DRIVER$$aarticle
001014225 3367_ $$2DataCite$$aOutput Types/Journal article
001014225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1693298492_22959
001014225 3367_ $$2BibTeX$$aARTICLE
001014225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014225 3367_ $$00$$2EndNote$$aJournal Article
001014225 520__ $$aSince dynamical systems are an integral part of many scientific domains and can be inherently computational, analyses that reveal in detail the functions they compute can provide the basis for far-reaching advances in various disciplines. One metric that enables such analysis is the information processing capacity. This method not only provides us with information about the complexity of a system’s computations in an interpretable form, but also indicates its different processing modes with different requirements on memory and nonlinearity. In this paper, we provide a guideline for adapting the application of this metric to continuous-time systems in general and spiking neural networks in particular. We investigate ways to operate the networks deterministically to prevent the negative effects of randomness on their capacity. Finally, we present a method to remove the restriction to linearly encoded input signals. This allows the separate analysis of components within complex systems, such as areas within large brain models, without the need to adapt their naturally occurring inputs.
001014225 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001014225 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x1
001014225 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x2
001014225 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x3
001014225 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014225 7001_ $$0P:(DE-Juel1)176960$$aDick, Michael$$b1$$ufzj
001014225 7001_ $$0P:(DE-HGF)0$$aDuarte, Renato$$b2
001014225 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3$$ufzj
001014225 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-37604-0$$gVol. 13, no. 1, p. 10517$$n1$$p10517$$tScientific reports$$v13$$x2045-2322$$y2023
001014225 8564_ $$uhttps://juser.fz-juelich.de/record/1014225/files/article.pdf$$yOpenAccess
001014225 8767_ $$8SN-2023-00596-b$$92023-10-06$$a1200197295$$d2023-10-18$$eAPC$$jZahlung erfolgt
001014225 909CO $$ooai:juser.fz-juelich.de:1014225$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001014225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176595$$aForschungszentrum Jülich$$b0$$kFZJ
001014225 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176595$$aRWTH Aachen$$b0$$kRWTH
001014225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176960$$aForschungszentrum Jülich$$b1$$kFZJ
001014225 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176960$$aRWTH Aachen$$b1$$kRWTH
001014225 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001014225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ
001014225 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)151166$$aRWTH Aachen$$b3$$kRWTH
001014225 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001014225 9141_ $$y2023
001014225 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001014225 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
001014225 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001014225 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001014225 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014225 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001014225 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
001014225 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
001014225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
001014225 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001014225 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001014225 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014225 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001014225 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001014225 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001014225 920__ $$lyes
001014225 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001014225 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001014225 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001014225 9801_ $$aFullTexts
001014225 980__ $$ajournal
001014225 980__ $$aVDB
001014225 980__ $$aUNRESTRICTED
001014225 980__ $$aI:(DE-Juel1)INM-6-20090406
001014225 980__ $$aI:(DE-Juel1)IAS-6-20130828
001014225 980__ $$aI:(DE-Juel1)INM-10-20170113
001014225 980__ $$aAPC
001014225 981__ $$aI:(DE-Juel1)IAS-6-20130828