| Home > Publications database > A refined information processing capacity metric allows an in-depth analysis of memory and nonlinearity trade-offs in neurocomputational systems > print |
| 001 | 1014225 | ||
| 005 | 20240313103116.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-023-37604-0 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-03209 |2 datacite_doi |
| 024 | 7 | _ | |a 37386240 |2 pmid |
| 024 | 7 | _ | |a WOS:001022752100016 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-03209 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Schulte to Brinke, Tobias |0 P:(DE-Juel1)176595 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a A refined information processing capacity metric allows an in-depth analysis of memory and nonlinearity trade-offs in neurocomputational systems |
| 260 | _ | _ | |a [London] |c 2023 |b Macmillan Publishers Limited, part of Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1693298492_22959 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Since dynamical systems are an integral part of many scientific domains and can be inherently computational, analyses that reveal in detail the functions they compute can provide the basis for far-reaching advances in various disciplines. One metric that enables such analysis is the information processing capacity. This method not only provides us with information about the complexity of a system’s computations in an interpretable form, but also indicates its different processing modes with different requirements on memory and nonlinearity. In this paper, we provide a guideline for adapting the application of this metric to continuous-time systems in general and spiking neural networks in particular. We investigate ways to operate the networks deterministically to prevent the negative effects of randomness on their capacity. Finally, we present a method to remove the restriction to linearly encoded input signals. This allows the separate analysis of components within complex systems, such as areas within large brain models, without the need to adapt their naturally occurring inputs. |
| 536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a ACA - Advanced Computing Architectures (SO-092) |0 G:(DE-HGF)SO-092 |c SO-092 |x 1 |
| 536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 2 |
| 536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Dick, Michael |0 P:(DE-Juel1)176960 |b 1 |u fzj |
| 700 | 1 | _ | |a Duarte, Renato |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 3 |u fzj |
| 773 | _ | _ | |a 10.1038/s41598-023-37604-0 |g Vol. 13, no. 1, p. 10517 |0 PERI:(DE-600)2615211-3 |n 1 |p 10517 |t Scientific reports |v 13 |y 2023 |x 2045-2322 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014225/files/article.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1014225 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176595 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)176595 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176960 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)176960 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151166 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)151166 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-03-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-03-30 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-03-30 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-03-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-03-30 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:11:06Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:11:06Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:11:06Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-24 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-24 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-24 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|