Home > Publications database > NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways > print |
001 | 1014283 | ||
005 | 20250123221214.0 | ||
024 | 7 | _ | |a 10.1073/pnas.2300558120 |2 doi |
024 | 7 | _ | |a 0027-8424 |2 ISSN |
024 | 7 | _ | |a 1091-6490 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03213 |2 datacite_doi |
024 | 7 | _ | |a 37523562 |2 pmid |
024 | 7 | _ | |a WOS:001121663700001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03213 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Wybo, Willem A. M. |0 P:(DE-Juel1)186881 |b 0 |e Corresponding author |
245 | _ | _ | |a NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways |
260 | _ | _ | |a Washington, DC |c 2023 |b National Acad. of Sciences |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737627283_15262 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a While sensory representations in the brain depend on context, it remains unclearhow such modulations are implemented at the biophysical level, and how processinglayers further in the hierarchy can extract useful features for each possible contex-tual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can,within physiological constraints, implement contextual modulation of feedforwardprocessing. Such neuron-specific modulations exploit prior knowledge, encoded instable feedforward weights, to achieve transfer learning across contexts. In a network ofbiophysically realistic neuron models with context-independent feedforward weights,we show that modulatory inputs to dendritic branches can solve linearly nonseparablelearning problems with a Hebbian, error-modulated learning rule. We also demonstratethat local prediction of whether representations originate either from different inputs,or from different contextual modulations of the same input, results in representationlearning of hierarchical feedforward weights across processing layers that accommodatea multitude of contexts. |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 1 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 2 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
536 | _ | _ | |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005) |0 G:(DE-Juel-1)PF-JARA-SDS005 |c PF-JARA-SDS005 |x 4 |
536 | _ | _ | |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) |0 G:(DE-82)EXS-SF-neuroIC002 |c EXS-SF-neuroIC002 |x 5 |
536 | _ | _ | |a Functional Neural Architectures (jinm60_20190501) |0 G:(DE-Juel1)jinm60_20190501 |c jinm60_20190501 |f Functional Neural Architectures |x 6 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Tsai, Matthias C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tran, Viet Anh Khoa |0 P:(DE-Juel1)192408 |b 2 |u fzj |
700 | 1 | _ | |a Illing, Bernd |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Jordan, Jakob |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 5 |
700 | 1 | _ | |a Senn, Walter |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1073/pnas.2300558120 |g Vol. 120, no. 32, p. e2300558120 |0 PERI:(DE-600)1461794-8 |n 32 |p e2300558120 |t Proceedings of the National Academy of Sciences of the United States of America |v 120 |y 2023 |x 0027-8424 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014283/files/Invoice_APC600450426.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1014283/files/Wybo2023NMDAdrivenDendriticModulationEnablesMultitaskRepresentationLearning.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1014283 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186881 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)192408 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)151166 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-08 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-08 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-08-26 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-26 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2023-08-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-15-20210701 |k PGI-15 |l Neuromorphic Software Eco System |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)PGI-15-20210701 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|