001     1014283
005     20250123221214.0
024 7 _ |a 10.1073/pnas.2300558120
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03213
|2 datacite_doi
024 7 _ |a 37523562
|2 pmid
024 7 _ |a WOS:001121663700001
|2 WOS
037 _ _ |a FZJ-2023-03213
082 _ _ |a 500
100 1 _ |a Wybo, Willem A. M.
|0 P:(DE-Juel1)186881
|b 0
|e Corresponding author
245 _ _ |a NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways
260 _ _ |a Washington, DC
|c 2023
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737627283_15262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While sensory representations in the brain depend on context, it remains unclearhow such modulations are implemented at the biophysical level, and how processinglayers further in the hierarchy can extract useful features for each possible contex-tual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can,within physiological constraints, implement contextual modulation of feedforwardprocessing. Such neuron-specific modulations exploit prior knowledge, encoded instable feedforward weights, to achieve transfer learning across contexts. In a network ofbiophysically realistic neuron models with context-independent feedforward weights,we show that modulatory inputs to dendritic branches can solve linearly nonseparablelearning problems with a Hebbian, error-modulated learning rule. We also demonstratethat local prediction of whether representations originate either from different inputs,or from different contextual modulations of the same input, results in representationlearning of hierarchical feedforward weights across processing layers that accommodatea multitude of contexts.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |a SDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)
|0 G:(DE-Juel-1)PF-JARA-SDS005
|c PF-JARA-SDS005
|x 4
536 _ _ |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
|0 G:(DE-82)EXS-SF-neuroIC002
|c EXS-SF-neuroIC002
|x 5
536 _ _ |a Functional Neural Architectures (jinm60_20190501)
|0 G:(DE-Juel1)jinm60_20190501
|c jinm60_20190501
|f Functional Neural Architectures
|x 6
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tsai, Matthias C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tran, Viet Anh Khoa
|0 P:(DE-Juel1)192408
|b 2
|u fzj
700 1 _ |a Illing, Bernd
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jordan, Jakob
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 5
700 1 _ |a Senn, Walter
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1073/pnas.2300558120
|g Vol. 120, no. 32, p. e2300558120
|0 PERI:(DE-600)1461794-8
|n 32
|p e2300558120
|t Proceedings of the National Academy of Sciences of the United States of America
|v 120
|y 2023
|x 0027-8424
856 4 _ |u https://juser.fz-juelich.de/record/1014283/files/Invoice_APC600450426.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1014283/files/Wybo2023NMDAdrivenDendriticModulationEnablesMultitaskRepresentationLearning.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014283
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186881
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)151166
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21