001014290 001__ 1014290
001014290 005__ 20250701125851.0
001014290 037__ $$aFZJ-2023-03215
001014290 041__ $$aEnglish
001014290 1001_ $$0P:(DE-HGF)0$$aDuarte, Juan Pablo Ricon$$b0
001014290 1112_ $$a17th International Conference on Energy Sustainability$$cWashington DC$$d2023-07-10 - 2023-07-12$$gES 2023$$wUSA
001014290 245__ $$aSolar hydrogen production with a membrane reactor: Process description and reactor design
001014290 260__ $$c2023
001014290 3367_ $$033$$2EndNote$$aConference Paper
001014290 3367_ $$2DataCite$$aOther
001014290 3367_ $$2BibTeX$$aINPROCEEDINGS
001014290 3367_ $$2DRIVER$$aconferenceObject
001014290 3367_ $$2ORCID$$aLECTURE_SPEECH
001014290 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706092335_9439$$xAfter Call
001014290 520__ $$aHydrogen plays a key role in the energy transition towards a decarbonised economy. According to the 2030 Net Zero Scenario , global H2 demand is expected to reach about 180 Mt, since this fuel will be used by important sectors of our economy such as heavy-duty transport, shipping, aviation, as well as heavy industry. To cover the expected hydrogen demand, improvement of existing technologies as well as development of new systems is needed. Solar thermal energy is an attractive option to power membrane-supported steam thermolysis for hydrogen production. Compared to two-steps Solar Thermochemical Water Splitting (STWS) cycles, solar membrane reactors are inherently operated under isothermal conditions and also don’t require a pressure swing. The isothermal process avoids the need for heat recovery between the oxidation and reduction steps, which is one of the main challenges of two steps STWS cycles. In the scope of the MESOWAS project, a membrane reactor for the production of hydrogen from steam is being developed and analysed. The ceramic membrane reactor is based on the design concept of a F10 stack of solid oxide cells . The steam flow is supplied to one side of the oxygen-permeable membrane, while the oxygen is continuously removed on the other side. Two approaches to guarantee a constant low oxygen partial pressure on the permeate side of the membrane are considered: Sweep gas or the partial oxidation of biomethane. The chosen flat membrane geometry allows the combination of multiple membrane layers in a single stack, which can facilitate the upscaling of this design. The coupling of the membrane reactor with solar thermal energy is analysed regarding a required homogeneous temperature distribution for the membrane stack, and a strategy for the planned experimental demonstration is developed. Using the model presented by Bulfin , the thermodynamic limit of an ideal countercurrent membrane reactor is identified, and an operating strategy to produce hydrogen is determined.
001014290 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001014290 7001_ $$0P:(DE-HGF)0$$aNeumann, Nicole$$b1
001014290 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b2$$ufzj
001014290 7001_ $$0P:(DE-Juel1)184692$$aBüddefeld, Bernd$$b3
001014290 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b4$$ufzj
001014290 7001_ $$0P:(DE-HGF)0$$aSattler, Christian$$b5
001014290 909CO $$ooai:juser.fz-juelich.de:1014290$$pVDB
001014290 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b0
001014290 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001014290 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b1
001014290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ
001014290 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b4$$kFZJ
001014290 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Synhelion$$b5
001014290 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001014290 9141_ $$y2023
001014290 920__ $$lyes
001014290 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x0
001014290 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
001014290 980__ $$aconf
001014290 980__ $$aVDB
001014290 980__ $$aI:(DE-Juel1)ZEA-1-20090406
001014290 980__ $$aI:(DE-Juel1)IEK-1-20101013
001014290 980__ $$aUNRESTRICTED
001014290 981__ $$aI:(DE-Juel1)ITE-20250108
001014290 981__ $$aI:(DE-Juel1)IMD-2-20101013