001014297 001__ 1014297 001014297 005__ 20230829205459.0 001014297 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03220 001014297 037__ $$aFZJ-2023-03220 001014297 041__ $$aEnglish 001014297 1001_ $$0P:(DE-Juel1)194707$$aNieto, Nicolas$$b0$$eCorresponding author 001014297 1112_ $$aOrganization for Human Brain Mapping (OHBM)$$cMontreal$$d2023-07-22 - 2023-07-26$$wCanada 001014297 245__ $$aJuHarmonize: Leakage-free data harmonization 001014297 260__ $$c2023 001014297 3367_ $$033$$2EndNote$$aConference Paper 001014297 3367_ $$2BibTeX$$aINPROCEEDINGS 001014297 3367_ $$2DRIVER$$aconferenceObject 001014297 3367_ $$2ORCID$$aCONFERENCE_POSTER 001014297 3367_ $$2DataCite$$aOutput Types/Conference Poster 001014297 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1693297726_22959$$xAfter Call 001014297 500__ $$aAcknowledgments: This study was supported by Helmholtz AI project DeGen and Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain. 001014297 520__ $$aCombining datasets is desirable when building machine learning models. Differences in data acquisition present undesired variability undermining subsequent machine learning performance. Data harmonization methods such as ComBat can be employed, however, the requirement of test set labels causes data leakage and prevents real-world deployment. We propose a method called JuHarmonize that harmonizes data without those issues. 001014297 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001014297 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x1 001014297 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b1 001014297 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b2 001014297 8564_ $$uhttps://juser.fz-juelich.de/record/1014297/files/Poster_Nieto_OHBM_2023.pdf$$yOpenAccess 001014297 909CO $$ooai:juser.fz-juelich.de:1014297$$popenaire$$popen_access$$pVDB$$pdriver 001014297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194707$$aForschungszentrum Jülich$$b0$$kFZJ 001014297 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)194707$$a HHU Düsseldorf$$b0 001014297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b1$$kFZJ 001014297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b2$$kFZJ 001014297 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b2 001014297 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001014297 9141_ $$y2023 001014297 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001014297 920__ $$lyes 001014297 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001014297 980__ $$aposter 001014297 980__ $$aVDB 001014297 980__ $$aUNRESTRICTED 001014297 980__ $$aI:(DE-Juel1)INM-7-20090406 001014297 9801_ $$aFullTexts