001     1014297
005     20230829205459.0
024 7 _ |a 10.34734/FZJ-2023-03220
|2 datacite_doi
037 _ _ |a FZJ-2023-03220
041 _ _ |a English
100 1 _ |a Nieto, Nicolas
|0 P:(DE-Juel1)194707
|b 0
|e Corresponding author
111 2 _ |a Organization for Human Brain Mapping (OHBM)
|c Montreal
|d 2023-07-22 - 2023-07-26
|w Canada
245 _ _ |a JuHarmonize: Leakage-free data harmonization
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1693297726_22959
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a Acknowledgments: This study was supported by Helmholtz AI project DeGen and Helmholtz Portfolio Theme Supercomputing and Modeling for the Human Brain.
520 _ _ |a Combining datasets is desirable when building machine learning models. Differences in data acquisition present undesired variability undermining subsequent machine learning performance. Data harmonization methods such as ComBat can be employed, however, the requirement of test set labels causes data leakage and prevents real-world deployment. We propose a method called JuHarmonize that harmonizes data without those issues.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 1
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 1
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 2
856 4 _ |u https://juser.fz-juelich.de/record/1014297/files/Poster_Nieto_OHBM_2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014297
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194707
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)194707
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21