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Abstract

A proposed modification of the exchange-correlation magnetic field in density func-
tional theory is implemented into the all-electron full-potential linearized augmented-
plane-wave code Fleur [1]. By removing terms from the magnetic field that stem from
source contributions not found for physical ones, a recent paper [2] has shown that the
prediction of Fe magnetic moments in iron pnictide materials can be improved vastly
while conserving the accurate description of simpler materials. The theory justifying
the idea is explored and the physicality of the modification is discussed. The inter-
action of the modification with different kinds of magnets is highlighted, the possible
constraints in application are explained and justified and the results are compared
to those from the original paper calculated via the Elk code [3]. Furthermore, the
effect on the coupling parameters in a Heisenberg model is investigated to gain greater

insight about how the modification works and why the improvements happen.
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1. Introduction

Since the beginning of the 20th century and the advent of quantum physics as a fun-
damental theory for describing phenomena on the microscopic level, there has been
an ongoing growth in the field of solid state physics and chemistry. This is true for
the applications and experiments, for the amount of effects that can be successfully
described by theoretical investigations and for the sheer amount of theoretical ap-
proaches that exist. None of these approaches gives the full picture that describes
every single phenomenon, but instead they each have their own range of validity with
respect to temperature, the number of atoms that need to be described, the overall
density of the system and the type of effect that needs describing.

One of those approaches is the density functional theory (DFT) that reduces the
complex many-body equation to a matter of energy optimization with respect to
the ground-state density. The theory is ab initio in nature, hence it only takes the
atomic structure and electron configuration of a system into account and from this
can give insight into the electronic structure. It also provides a useful (although not
mathematically rigorous) approximation of the band structure and density of states,
allowing the theoretical description and distinction of insulators, conductors and semi-
conductors. While the original theory was formulated for non-magnetic systems with
weak correlations that were only taken into account locally ([4], [5]) many improve-
ments were made over the years to include collinear [6] and non-collinear magnetism
[7], relativistic effects such as spin-orbit coupling [8] and even strong correlation ef-
fects by means of additional terms describing Hubbard-type interactions [9]. Due to
all these extensions, DF'T has become a versatile tool for first-principles calculations.
One particular field of use for DF'T is the study of periodic lattices. This reduces the
computational effort significantly by default, as according to the Bloch theorem, the
real-space wave function can be expanded in terms of plane waves coupled to lattice-
periodic functions in this case. A question distinguishing the wide range of DFT
methods is, what form is an appropriate expansion of those lattice-periodic functions

in terms of a basis set. In the all-electron full-potential linearized augmented plane-
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wave method (FLAPW) these functions are chosen as a spherical harmonics expansion
for a certain sphere around each atom and plane waves in the space separating them,
leading to a pattern resembling a muffin baking sheet. One implementation of this
method is the Fleur [1] code, that started as a code for the calculation of thin film
systems, but has since been expanded for bulk calculations as well and has all the
extensions mentioned above available.

A recent paper considering calculations with the FLAPW Elk code [3] proposed an
additional modification of the magnetism that removes artifacts from the calculation
of the exchange-correlation potential that lead to source terms in the resulting mag-
netic fields [2]. This was used to greatly improve the description of iron pnictide
materials, that were shown to exhibit high-temperature superconductivity and are
therefore of high interest for the understanding of the mechanisms behind it ([10],
[11], [12]). In principle, the source-free modification only makes use of existing code
structures like the Coulomb potential generator that is needed in every DFT code
and basic derivative routines. This thesis deals with the implementation of this mod-
ification, the finer points that need to be taken into consideration when using it, its
application to several materials to compare results with [2] and an investigation into
how exactly the materials are affected and why the modification works the way it

does.



2. Theory

The basis of all theoretical solid state physics is the many-body Hamiltonian of a
system with a high number of atomic nuclei and their corresponding numbers of
electrons. The full system is fundamentally too complex to be treated both analyt-
ically and numerically. Approximations need to be made to make the mathematical
treatment possible [13]. The first one is often the Born-Oppenheimer or adiabatic
approximation, that neglects quantum mechanical effects from the n nuclei on ac-
count of their disproportionately large mass in comparison to the electrons. They
are viewed as static and only contributing a fixed external potential. This reduces
the problem to an N-electron problem with the following Schrédinger equation in real

spacel:

N n .
1t ZZ - R, (15 7N) (r1,...,"N)

However, this is not enough. N tends to be very large, leading to even larger
dimensions of 3V for the wave function, while also requiring it to be anti-symmetric
according to the Pauli exclusion principle. The general solution of this problem using
Slater determinants as a basis is only possible for small systems and therefore unfit for
the description of realistic solids. Modern ab-initio calculations are rather founded
on methods from quantum chemistry, for example Hartree-Fock approximations or
methods developed from them, or as is the case in this thesis, a variational ansatz
known as density functional theory (DFT; see [14] for a comprehensive summary),

developed initially in two papers by Hohenberg and Kohn [4] and Kohn and Sham

[5]-

LAll equations in this thesis will be written in Hartree atomic units, i.c. h=me=e=1
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2.1. Density Functional Theory

2.1.1. The Hohenberg-Kohn Theorem

While the N-electron wave function contains all information about the system un-
der question, real measurable physical quantities correspond to expectation values of
quantum-mechanical operators. To circumvent the superfluous amount of informa-
tion gained by the wave function, it is convenient to describe these quantities in terms
of the real-space electron density as given by the expectation value of an N-particle
Dirac distribution [15].

n(r) = (¥ Zé(r 7)) = [ (ry, ..., mN)]?

i=1
In [4] it is shown by Hohenberg and Kohn, that for a non-degenerate ground state
two key properties hold:

a) The external potential V,,; (and hence the total energy E) is a unique functional

of the electron density.

b) The functional E[n] that delivers the ground-state energy of the system gives
the lowest energy if and only if the input density is the true ground-state density

no(r).

Mathematically, this can be written as:

n(r) < Vo(r), ...
E[n] > E[ng] Yn(r) + no(r)
Extensions to degenerate ground states have been done (see for example [16]), but
are not the main focus of this thesis. The second part of the theorem implies, that

the ground-state density can be found by minimizing the energy functional, leading

to the condition of its functional derivative vanishing:

dE[n] =0

More generally and with no initial assumption about the shape of E[n], this can

be redefined as:
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Eln] =, min (VHWY)

2.1.2. The Kohn-Sham Equations

To make the initial ideas of Hohenberg and Kohn applicable in actual calculations,
the energy functional needs to be examined and categorized further. Kohn and Sham

proposed a dissection into three distinct contributions.

E[n]=Tsn]+U[n] + E.[n]

T, is the kinetic energy of N non-interacting electrons. The Coulomb energy U is
made up of the energy terms due to the external nuclear potential and the electron-

electron interaction in Hartree approximation.

Uln] = Eext[n] + Eg[n]

E.i[n] = [d37" n(r)Vep (1)

The exchange-correlation energy functional E,.[n] contains all contributions to
the energy functional, that are not already contained in the non-interacting kinetic
and Coulomb terms, i.e. contributions due to the interaction, meaning exchange
and correlation effects between the electrons. With this separation, the kinetic term

becomes less complex and reduces to a sum over the 1-particle kinetic energies.

N
Ts = Z Ts,i

=1

~

However, one now needs to find a way to construct this kinetic energy from the
electron density instead of from the wave function. Furthermore, an exact closed form
for E,.[n] does not exist, but a plethora of good approximations to accurately predict
the structural properties and electronic structure of solids have been developed and
will be discussed further in chapter 2.1.4.

To arrive at a system of equations that can be treated numerically, making an ansatz
for the electron density is a common next step. In Kohn-Sham DF'T, the total electron

density is deconstructed into a sum of N 1-electron densities, which leads to the
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definition of N 1l-electron wave functions v, (7). The prefactor of 2 is accounting for

the spin degeneracy of non-magnetic ground states.
N
U(r) =2 b(r)
v=1

n(r) =2 ;Iwu(r)F

With this ansatz the kinetic energy reduces to an analytic expression and can be

written as:

nn) =23 [ @ i) 5au.r)

This form is easy to understand analytically, but not very convenient numerically,
so it will be reorganized in 2.1.5. The minimization of the total energy can be re-
formulated into one with respect to the newly constructed ,(r). The subsidiary
condition mentioned in the Hohenberg-Kohn theorem then becomes the restraint of

normalized 1-electron wave functions.

/d3r Wy (PP 21 Vv e{1,..., N}

The theory of variational calculus states, that such a condition can be taken into
account for a minimization with a Lagrange parameter ¢, and the variational principle
then leads to IV so-called Kohn-Sham Equations, that are highly Schrodinger-like in

structure.

Hszl/ = [_%A + ‘/eff('r)] 1/)1/(7’) = Gwa

Vers(r) = Vear(r) + Vi (r) + Ve (r)

The effective potential V¢ () consists of the external nuclear potential V,.(r), the
Hartree potential Vi (7) and the exchange-correlation potential V,..(r). The latter two
are dependent on the total density n(r), which complicates the computational effort
and constitutes a self-consistency problem. The effort is albeit drastically reduced in
comparison to the case of an N-electron wave function and additionally requires much
less storage space, stepping down from a function with 3/N degrees of freedom to N

functions with only three dimensions.
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/d3 ! n(,r
r—7'|

dEz[n(r)]
on(r)

It should be noted that the Lagrange parameters ¢, will often be viewed as 1-particle

Vie(r) =

energies although they are not physical in that sense. They can however be related
to such when considering the basic many-body theory of Fermi liquids, that describe
excitations as particles with their own attributes such as position, momentum and a
kinetic energy. This yields the question of the best mapping between the interacting
many-body system and such a liquid of non-interacting particles. As it turns out,
the Kohn-Sham mapping works very well for such a description, giving informational
value to the eigenenergies, while being limited by the same condition that correlation

effects are somewhat weak.

2.1.3. Magnetic systems

The theory as formulated above is enough to describe a wide class of non-magnetic
systems like the very basic elemental silicon. In this case, the spin-up and spin-down
electrons are not differentiated and the spin only enters as a factor 2 for the total
density. Magnetic effects however can only be described with a spin-polarized ground
state i.e. a non-zero ground state magnetization, which also applies to a range of
materials, especially those containing elemental (anti-)ferromagnets like iron. Such
is also the case for electronic systems exposed to an external magnetic field. Techni-
cally, all magnetic attributes of a system could be found with just the charge density
alone, granted an appropriately exact and complicated energy functional is used, by
expressing the magnetization density m(r) as a functional depending on n as well. In
practice, the Hohenberg-Kohn Theorem and the resulting Kohn-Sham Equations are
rather extended by m as a second variational quantity. Another possible choice to
capture magnetic effects in such a way would be to instead consider the current den-
sity 7, which will be further discussed in chapter 2.2.1. With this second fundamental

variable, the variational principle becomes:

E[n,m] > E[ng, my]

Alternatively, this variation can be formulated with respect to a 2 x 2 density ma-
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trix p(r) with spin-up and spin-down components [6]. Both sets of quantities are
completely equivalent and can be transformed into one another. The spin-dependent
form of the Kohn-Sham Equations requires the introduction of two-component Pauli
wave function vectors instead of a scalar one and a 2 x 2 potential matrix instead of
only a scalar potential. This matrix can be identified with an effective magnetic field,

coupling to the vector of Pauli spin matrices o in a Zeeman-like fashion.

. - Uru(T)
¢V( ) (1/%,1/("“))

n(r) - ilw,,(r)ﬁ
m(r) - i b (r)op, (r)

[_%AJrVeff("")JfU'Beff(r) Pu(r) = etpu(r)

As in the non-magnetic scalar case for the potential, the effective magnetic field
B, has several contributions. The Hartree-like contributions of the magnetization

density are often neglected and the resulting field is written as:
Beff(’l") = Bemt(’l") + ch(’r')

0E[n(r), m(r)]

Buc(r) = om(r)

For a wide range of materials, most prominently purely ferromagnetic and anti-
ferromagnetic ones, a formulation with only one magnetization density component is
enough and no off-diagonal elements are needed in the potential or density matrix.
That means the spin up- and down-components can be used to describe all relevant
magnetic effects, where the spin up-direction is identified with the real space z-axis.
The 1-particle Hamiltonian then becomes diagonal in spin space and the Schrodinger
equation is decoupled into two separate non-spinpolarized ones that can be solved
independently of each other. The fundamental variables are then either the total
density n(r) and magnetization density m(r) = m,(r) or the spin-up and spin-down

densities given by:
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ne(r) = 2::1 Wa,u("')|2 = oo (T)

With the spin index o =1,|. More complex magnetic structures can only be de-
scribed when off-diagonal magnetism is taken into account. However, because most
approximations of the exchange-correlation potential only take the two scalar quan-
tities above as arguments, many approaches make use of local rotations of the mag-
netization density in real space to again calculate the two spin-up and spin-down
potentials in an intermediate step and then rotate the resulting magnetic field back
to the global frame. This description is sufficient to construct potentials for the case
of non-collinear magnetism as well [17]. For comparison and for the sake of complete-

ness, the necessary relation for a formulation in terms of matrices is:

[—%A + V(r)] h(r) = e (r)

With the matrices:

5 _1 n(r o-Mm\r))=—=-
p(r)—2(Iz (r)+ (7)) my(r) +im,(r)  n(r)-m.(r)

1( n(r) +m,(r) mz(r)—imy(r))
2

V() = LV.sp(r) + o - Begs(r) = ( Vers(r) + Becgs(r) - Buess(r) - z‘By,effm)

Baepp(r) +iByepp(r)  Veps(r) = Boepp(r)

Where I is the 2 x 2 identity matrix. The matrix elements for the densities are

given in terms of the Kohn-Sham wave functions by:

pap(T) = Z:lwé,y('r)%,u('r')

With the spin indices «, 8 =1, .

2.1.4. Approximations of the Exchange-Correlation Potential

To make the theoretical concepts of DFT applicable to real materials, the exchange-
correlation functional requires further investigation. A closed form in terms of the
total electron density and in magnetic cases also of the magnetization density needs
to be chosen, so the self consistency loop can operate. The most basic approximations

harken back to the days of Hartree-Fock calculations, the Thomas-Fermi approxima-
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tion or even the homogeneous electron gas. More modern variants are often found
by quantum field theoretical approaches or Quantum Monte Carlo. Although more
are known, there are two very common classes containing a broad collection of func-
tionals and potentials. The first class is based on the Local Density Approximation
(LDA) derived from the homogeneous electron gas, that assumes the potential to only
depend on the electron density in the same point in space. Different LDA functionals

only differ in the explicit parametrization of the local energy.
ael(r) % (1) — Eue= [ dr n(r)ese(n(r)

d€ze(n(r))

= Vaelr) = eaen(r) ()5 3

The generalization to spin-polarized systems is straightforward in the sense, that
|m(7)| enters as a second variable into the exchange-correlation energy density and
the exchange-correlation magnetic field will be parallel to the magnetization density

for every point in space. It can be calculated as:

deze(n(r),|m(
olm(r)|

Bu.(r) = n(r) "W o)

This form of DFT is known as spin-density functional theory (SDFT). The sim-
ple form for the magnetic field is the reason the Local Spin Density Approximation
(LSDA) can easily be applied to systems with non-collinear magnetism. LDA func-
tionals were shown over the years to produce very accurate results in many cases, with
the general caveat that the approximation tends to overbind structures, meaning that
it will mostly underestimate lattice constants. Another shortcoming is that it predicts
iron to form a non-magnetic face-centered cubic structure instead of the ferromagnetic
body-centered cubic one it is known to have in reality [18]. There is, however, another
important class of functionals that also take into account the spatial derivatives of
the densities. The Generalized Gradient Approximation (GGA) for non-spinpolarized
systems tries to improve the description by not neglecting non-localities in €,.(r) in
the sense that the spatial gradient of the electron density is introduced as a second

variable.

€ze(1) ® €ze(n(r), Vn(r))

GGA functionals differ far more between different parametrizations, as the addi-

10
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tional question of exactly how to incorporate the gradients arises. GGA functionals
yield improved results for a wide class of non-magnetic systems, mostly curing the
shortcomings highlighted above while instead tending to underbind structures a little.
But the proper description of magnetism becomes more complicated with GGA in the
case of non-collinear magnetism. It is not trivial to analyze, which gradient of which
quantity should enter the energy density in which way?. The inherently parallel mag-
netization density and magnetic field from LSDA are no longer given and the space
of possible resulting parametrizations is vast. The Fleur code partially circumvents
this problem by explicitly rotating the magnetization density in each point of space
into the positive z-axis before calculating Ve and rotating the resulting potential back
afterwards. In this approach, the gradient of the absolute value of the magnetization

density is used®. This constitutes a second layer of approximation to the functional.

2.1.5. Calculating the total energy

For several types of calculations, for example when calculating the optimized structure
of a crystal, information about the total energy of the system is needed. One relevant
term was neglected in previous chapters, namely the contribution from the ion-ion
interaction causing forces that can contract or expand the system and shift atoms
around. It is, of course, similar in form to the electron-electron and electron-ion

interaction.

2 j7j,:1 |R] - Rj/|

g=5’

Rearranging and replacing the kinetic energy term, that is not very handy for
calculations in real space, by terms gained from the Kohn-Sham equations like the

energy eigenvalues the following final form arises:

JZj: fdgrn(r e fd3rm(r) Bxc(T)——fd?’ /d3 , n(r)n(r’)

v

2Case in point: While finishing this thesis, the method with which the gradient is evaluated in
Fleur was changed from the one given in equation (27) to equation (28) from [7].
3L.e. the calculation scheme according to equation (27).

11
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1 & AVAL
v [ @@, mml+ 5 Y
2 j,jz’;l [R; ~ Ry

j#d’
In principle, this is the quantity that needs to be minimized with respect to the

densities in a self-consistent way.

2.1.6. The self-consistent field cycle in DFT

As alluded to above, modern DF'T calculations solve the Kohn-Sham Equations self-
consistently. This self-consistent field (SCF) cycle begins with an input density and
iteratively converges it to a final result given by the condition that the density changes
less than a preset € in the last iteration. For the Fleur code specifically, there are
a set of additional steps after the generation of the potential from the density that
are listed here and explained in detail in the chapter on computational details. In
most methods, a basis in which to expand the wave functions, densities and potentials
needs to be chosen. As periodic solids are very often the system under consideration,
plane waves are the most basic choice and the notation using reciprocal lattice vectors

G and Bloch vectors k for the resulting matrix elements stems from this approach:

1 .
SOG(ky ,,,,) _ ﬁez(lHG).r

HES (k) = (pa (k)| Hicslpa(R)) = [ dr (b, m) Hicsipa (k. m)

After the eigenvalues and eigenvectors are calculated for each band index v, the
Fermi energy is calculated from the requirement of particle number conservation and
all wave functions with energies below the Fermi energy make up the new density cal-
culated from the present iteration. The input and output density are mixed together
to a degree pre-determined by a mixing parameter .. In the most basic case of simple

mixing, a method with linear convergence, the mixed density is determined as:

n™ = (1-a)n™+aF{n™}

F is the mix vector representing the output density of the current iteration, driv-
ing the density to the minimum. As this method is very stable for small «, but very
slow, different mixing schemes based on Newton-Raphson and Quasi-Newton methods

are preferred, but these will not be explained here in detail. The resulting quantity

12
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constitutes the input for the next iteration. In the Fleur framework, after the con-
vergence of the density, optional structure optimizations can be performed. For this,
the forces acting on each atom are calculated as derivatives of the total energy and
the atoms are displaced by a small amount accordingly to relax the structure. SCF-
calculations and relaxations are done alternately until the forces are converged to a
preset distance €pyr.. from zero. This corresponds to the idea of Born-Oppenheimer
dynamics, in contrast to Car-Parrinello schemes, that converge both the density ad
the forces simultaneously. Figure 2.1 highlights the necessary steps for an SCF loop
without structure relaxations. The details for its execution in the FLAPW method

are described in chapter 2.4.

Compute V()

Solve 1-particle
KS equations
for each k

@@ Determine Er

l

Calculate
ﬁout (’I")
from bands
below Er

i

Density
matrix
con-
verged?

Mix ﬁout,m ( 'r)

|
and Py (r) Donel!

Figure 2.1.: Flowchart of the basic DFT SCF loop (c.f. [19])
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2.2. Source-Free magnetism

The treatment of magnetism within an ab-initio framework is a challenging task. The
multitude of theoretical entry points all bring their own qualities and difficulties to the
table. In the previous chapters, the method of Spin-Density Functional Theory was
proposed. The magnetization density and magnetic field are extracted from a spin-
polarized density with up- and down components. From this, a non-collinear density
either results from gradient terms in GGA approaches or can be found by rotating a
collinear field from a rotated local density back to a global frame in both LSDA and
GGA theories. This chapter introduces another approach based on current-density
functional theory (CDFT) and highlights a possible transition between the two for
certain cases [20]. From this transition, a method to remove magnetic fields resulting
from source-terms that appear as artifacts of the exchange-correlation functional is
proposed, that was used by Sharma et al. [2] to great avail when analyzing pnictide
materials, improving the description of their internal magnetic moments drastically

when compared to the normal non-collinear case.

2.2.1. Current-Density Functional Theory

In the original formulation of CDFT [21], the SDFT Hamiltonian is modified by
two extra terms. The first describes the coupling of an external vector potential A
to a diamagnetic current density j;. The second term corresponds to a quadratic
dependency on that external potential. The treatment applied in the following does
not rely on this external potential but rather assumes A = 0 and starts from an
identity shown in [20] that establishes a direct relation between SDFT and CDFT
functionals for the case of vanishing peripheral fields and under the initial assumption
of a finite system. However, the condition of vanishing fields can be replaced with the
assumption of a periodic system, making boundary terms vanish when performing
integration by parts. The idea is as follows, starting from the total energy functional
in SDFT.

Bv.., 5. [n.m] = To[n]+ Ex[n]+ Ev[n, m]+ f &Br (1) V(1) + f & m(r)-Buu (1)

Assuming the external magnetic field is physical, it must be the rotation of an

external vector field A and integration by parts yields:

14



2.2. Source-Free magnetism

f d3r m(r) - Beg (1) = [ dr A (r) -V xm(r)

Instead of the magnetization density m, its curl now appears as a fundamental
variable in the functional. This curl can be identified with the spin-current den-
sity. This requires the reformulation of the exchange-correlation energy into a new
functional E,.[n,V x m] as well. From this one can derive a corresponding new

exchange-correlation magnetic field.

dE[n(r),vxm(r)]
I(V xm(r"))

:fd?’r' (r-r")Vv x

= / dBr' §(r — 1)V x Aue(r") = V x Age(r)

The functional derivative in the integrand is identified as an exchange-correlation
vector potential. As the magnetic field is its curl, it is source-free by construction.
So the field can be chosen to be source-free under the condition that the variation is
done with respect to the spin-current density. The curl of the resulting magnetization
density is the same as in the unmodified SDFT case, but the magnetization may differ

up to a curl-free function, i.e. the gradient of a scalar function f(r).

m(r) — m(r)+V[f(r)

That means the curl is exact, while the magnetization density itself is not. However,
the total magnetic moment per unit cell M and integrated moments over volumes
with vanishing m at the boundaries are conserved, as the integral over the gradient

vanishes.

2.2.2. Manually projecting out source terms

While CDFT yields a source-free description of magnetism, its major downside is the
lack of proper functionals to use it with and calculate an exchange-correlation vector
field A,.. Not many exist, that are more than the most basic LDA approach. So the

question arises, whether one can achieve some of the key advantages of CDFT within
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an SDFT framework. To make the theoretical and mathematical effort more manage-
able, the Helmholtz theorem from classical electrodynamics was applied instead by
Sharma et al. It states, that every real-space vector field (that is twice differentiable)
can be decomposed into a curl-free and a source-free part, where the first one can be
written as the real-space gradient of a scalar potential ¢ and the second one as the
real-space curl of a vector potential A. That means it is possible to construct the
source density of a given field by calculating its gradient. This source density enters

the Poisson equation to find the aforementioned scalar potential.

A¢ = -4V - B,,

The potential can be calculated in much the same way as the Coulomb potential in
the normal SCF loop, if the divergence of the magnetic field is represented the same
way as the normal charge density that enters the Poisson equation solver. From the
gradient of this potential one can then construct a correction field and from this a

new magnetic field, that is source-free by construction.

_ 1
B:vc = Ba:c + _v¢
4

The scalar part V,.¢; of the potential is not modified by this procedure. This
treatment gives the magnetic field a set of additional properties when compared to

the unmodified one.

a) B,. becomes necessarily non-local as it is obtained by solving the non-local
Poisson Equation, even if an LSDA functional was used initially and no gradients

were taken into account.

b) Bxc becomes necessarily non-collinear, even if the initial formulation was not.
As a consequence, the cross product of the magnetization density and magnetic
field is no longer 0 as it is by construction in unmodified LSDA and GGA.

m(r) x B,.(r) #0

The modification enters the SCF loop after the standard potential generation as a
finalizing option. Additionally, the authors of the original paper propose an additional
modification. The magnetization density entering F,. from which the magnetic field

is calculated is scaled up by a factor s. The same goes for the resulting magnetic
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2.2. Source-Free magnetism

field afterwards. This is done to enhance the spin-splitting and to keep the functional
variational. The parameter was chosen to optimize the magnetic moment per atom
for two materials and then applied to all others that were studied. It was observed
to be roughly universal across various materials, although dependent on the chosen
functional. This dependency will be explored further in the following chapters and
verified in 3.2.
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2.3. The generalized Heisenberg model

A very basic model often used in conjunction with DFT and its results is the so-
called classical Heisenberg model that treats the atoms as interacting fixed magnetic
moments. The associated Hamiltonian reduces the complex interaction terms to cou-
plings between these moments and allows to gain greater insight about the preferred
magnetic order in a material. The model is, in its most basic form, only dependent
on a coupling parameter J between nearest neighbours, i.e. directly adjacent atoms
in the lattice, and the magnetic moment related to the atomic spins. There are, how-
ever, generalized versions that allow for coupling between next-nearest neighbours or
even higher orders. Other models also take couplings of more than two atoms with
vectorial or tensorial couplings into account. Such couplings are important to describe
anisotropic magnetic configurations and to explain why they form. Chapter 5.2 will
deal with Heisenberg coupling parameters up to the second order to investigate and
explain the exact effect that the source-free modification has on the magnetic order

of a simple structure with a single type of atom. The generalized Hamiltonian is:

HHeisenberg =- Z Ji,jSi : Sj
ihj
For a next-nearest neighbour system (abbreviated as n.-n. n.) this reduces to two

terms for the immediate coupling between adjacent atoms (conventionally written as

<i,j>) and second order contributions (written here as << i,j >>).

Hn.—n.n.:_Jl Z Si'Sj_JQ Z Sls]

<irj> <<ig>>

To gain insight about the couplings from a converged DFT calculation, one needs
to associate the total energy of the unit cell with an energy contribution from the
Heisenberg term. The parameters can then be gained by linear combinations of ener-
gies from at least m different (anti-)ferromagnetic orderings of the same structure for
m —1 couplings. The m-th linearly independent parameter will always be a reference

energy Fj that contains all energy terms not modeled by the Heisenberg interaction.

EDFT=E0—J1 Z SZ"SJ‘_JQ Z SZS]

<%,7> <<5,7>>
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2.4. Specifics of the FLAPW method

2.4. Specifics of the FLAPW method

Based on the fundamental theory from the previous chapters, the question now arises
how to execute the self-consistency loop in particular. To solve the Kohn-Sham equa-
tions for each orbital, a suitable basis needs to be chosen that can accurately describe
the Kohn-Sham wave functions in the solid. From the choice of this basis, one gets
a set of properties to use and additionally new questions and problems that need to
be dealt with concerning the explicit generation of potentials, the construction of the
Kohn-Sham Hamiltonian and the solution of the eigenvalue problem it yields. The
Fleur code [1] is based on the all-electron full-potential linearized augmented plane
wave (FLAPW) approach, that is a highly thorough and precise approach to the study
of electronic structure and magnetic phenomena that other methods are frequently
benchmarked against. There are no assumptions made about the shape of the po-
tential and no pseudopotentials are used. Relativistic effects can also be taken into
account on several levels [22]. Furthermore, the basis is systematically extendable to

ensure convergence with respect to the representation [23].

2.4.1. Steps towards FLAPW

Actual calculations to determine the properties of real materials are frequently done
for periodic solids. According to the Bloch Theorem, the basis from which the wave
function and by extension the Kohn-Sham orbitals are built can then be chosen as the
product of periodic trial wave functions and plane waves with a wave vector k. The
most basic choice for the periodic functions would be plane waves, making various

calculations within the cycle very easy.

¢V(ka'r) = Z CkGJ/(PG(kaT)

|k+G|<Kmax

Where k is the Bloch wave vector, €2 is the volume of the unit cell, G are the
reciprocal lattice vectors and K,,,, is the maximum absolute value up to which the
plane waves are taken into account. v, (k,r) are the Kohn-Sham wave functions for
each band and ckc':V are the plane wave coefficients that constitute them. In this basis,
problems arise when calculating properties for the atomic regions. While plane waves
do a good job of describing smooth periodic functions, they are not well suited for
capturing the radial and divergent nature of the electrons near a core that lead to

heavy oscillations of the resulting wave functions and therefore require impractically
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high cutoffs for the set of G. The first improvement over this are Slater’s Augmented
Plane Waves (APW) [24], that take a different basis of radial and angular functions
to describe the electrons within a certain radius of each atomic core. This leads
to a structure resembling a muffin baking sheet for the unit cell, hence the atomic
regions are commonly referred to as Muffin Tins (MT) as sketched in figure 2.2. The
remaining part of the cell is called the interstitial region. The basis functions then
take the form:

%@i(IGG)-T r € Interstitial
Sum AT (K )y (r,)Y,™(#,) reMTH

Figure 2.2.: Visualization of the space separation in APW methods with Muffin Tins
(as found in [19])

Where the coefficients AZS (K) are fixed by the condition that the basis needs to
be continuous at the MT boundaries and r, = » - R, with R, the center of MT*.

w;(r) is the regular solution of the spherical Schrodinger equation given by:

[ O ((RY

2

+V(r)- El] ru(r) =0

“2m, " 2m, r

With the spherical component of the potential V' (r) and the energy parameter ;.
With a fixed Ej) that only enters into the construction of the basis, a standard secular
equation for the band energies would arise. It turns out that is approach does not
yield enough variational freedom to find an appropriate ground state. For that the F

need to be set to the band energies, which can then no longer be obtained by simply
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2.4. Specifics of the FLAPW method

diagonalizing the Hamiltonian. The energy parameters E;(k,v) are then dependent
on the Bloch wave vector and the band index. The computational problem becomes
nonlinear and thus highly resource-intensive. The choice of E; also becomes even more
difficult when more than a spherically averaged approximation of the MT-potential is
used, as the band energies are then no longer the optimal choice. Another difficulty
is the asymptote problem. When wu;(Rysrx) becomes zero, the radial functions and
plane waves become decoupled and the coefficients can no longer be matched. For an
extensive discussion of the APW method, consult [24] or [25].

To cure the lack of variational freedom, Andersen [26] proposed the linearization
of the spherical Schrodinger equation around the energy parameters and added the
energy derivatives of u; to the basis set, creating the Linearized Augmented Plane
Wave (LAPW) approach. This way, the E; are no longer required to match the band

energies. The corresponding Taylor series with respect to the energy e reads:

w(e,7) = w(E,r) +w(E,r)(e - E) +O[(e - E)?]

The linearization error [27] is of quadratic order in € and therefore in the wave
function, leading to an error of O[(e- E;)*] in the calculated band energies. This leads
to a good description of the wave function across a broad range of energy parameters
and makes choosing a single set for the whole valence band viable in most cases. There
are ways to cover an even broader range like simply using additional sets of energy
parameters for different energy windows (instead of only differentiating between core
and valence states). This means different basis functions for different energies. The
Fleur code instead relies on the extension of the basis by another type of function by
adding local orbitals to the already existing radial functions and derivatives. They
will be discussed below.

The LAPW approach brings its own merits and problems. The basis functions now

read:

Lei(K+G)-'r

(K, r) = va e e . R
Yim (A, (K)uy(ry, Er) + By, (K)w(ry, £))Y™(f,) v e MTH

m

r € Interstitial

For even greater variational freedom, as mentioned above, this equation is fre-
quently augmented by a third additive term C’l’f (K)uro(r,) representing the local
orbitals, leading to the LAPW+LO approach. The new coefficients Bl‘f (K) (and
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C’l‘f (K)) are fixed by the additional requirement of continuous derivatives at the
MT-boundaries (while the local orbitals are fixed to 0 there). The radial functions

are normalized according to:

Ryer
(wluy) = f dr r*u?(r) =1
0
From this the orthogonality of u; and w; can easily be constructed by taking the
energy derivative. The energy derivative of the radial Schrodinger equation also gives

an equation for the additional basis functions.

_2?:&6 0% + 2?;6 l(l;; D) +V(r)- El] rug(r) = rug(r)

As the basis functions are linear combinations of the different radial constituents,
they do not form an orthonormal set. They are, however, mostly orthogonal to the
core states [14], making their mixed contributions to the Eigenvalue problem vanish.
The matrix elements of the valence states are non-zero in general.

The advantages of the LAPW approach compared to APW are mostly obvious by
construction. One regains the ability to calculate the band energies by the diagonal-
ization of a single Hamiltonian like in the case of pure plane waves and the asymptote
problem at the MT-boundaries of APW is cured by the inclusion of the derivatives.
Additionally, the shape of the potential is not required to assume any particular
shape but can be acquired self-consistently and without restriction, which will be
discussed in the following chapter on FLAPW (Full-Potential Linearized Augmented
Plane Waves). As a caveat, it should be noted that LAPW requires an increased
amount of plane waves when compared to APW, as the radial basis couples to the
interstitial via the coefficients AZS (K) and Bz’f (K). The number of radial functions
w; and u; that can be varied independently of each other is at most the same as the
number of plane waves provided for the calculation. Hence, enough plane waves must

be chosen to ensure that the amount suffices for the additional description by the ;.

2.4.2. The FLAPW approach and its representations

Most early APW approaches made use of pseudopotentials within the muffin tins.
The (L)APW method in contrast enabled a description of spherical potentials there,
but most studies still assumed the shape of the corresponding interstitial potential to

be constant (baring exceptions like [28]) and angular effects were still neglected. This
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2.4. Specifics of the FLAPW method

constitutes the following potential:

Vi r € Interstitial

VMT“(TM) reMTH

V(r) =

Both these shape approximations are no longer made in the FLAPW method de-
veloped in [29] and [30]. Instead, the interstitial potential is again written as a
plane-wave expansion in the interstitial region and now additionally as a spherical

harmonics expansion in the MTs.

Y VEelGr r € Interstitial
V(r) =
Dim V]fFTu(T#)Ylm(fu) reMTH

The calculation of this potential will be discussed in 2.4.4 and relies on a corre-

sponding description of the real-space density in the same representation.

Y pGeier r € Interstitial
Sim Piprn (1) Y™ (P) e MT*

In proper DF'T calculations, the symmetry of the lattice is also taken into account.

p(r) =

L.e., the representation changes from pure plane waves and spherical harmonics to a
new basis of functions, split between the so-called stars in the interstitial region and
lattice harmonics in the spheres. The stars are constructed by summing all plane
waves that result from one representative G by application of the N; symmetry
transformations T = { R|7} of a lattice space group, consisting of rotations described

by the matrix R and translations by the vector .

1 ! (r-r
@s(r) = F ZeZRGS ( )
s T

This way, all plane waves that are equivalent are combined in a single star. In
the spheres, the point group of the atoms symmetries needs to be taken into account
instead, leading to different harmonics for different atoms in a given structure. The

combination into lattice harmonics K7, is:

KL (#) = 2l "V ()

With the expansion coefficients ¢;*. In principle, these coefficients each combine

two spherical harmonics with the same [ into one real spherical harmonic (i.e. terms
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~ e*% into sine and cosine terms) and eliminate angular dependencies, that do not fit
the symmetry of the system. It should be noted, that the application of the source-free
modification in the Fleur code uses intermediate quantities with reduced symmetry.
The symmetrized functions are constructed for the initial symmetry from the crystal
structure and to avoid conflicts between iterations, all calculations are done without
any symmetry operations besides the identity matrix. The Fleur code also extends
the basis to a third section, the vacuum, for the calculation of thin film systems. As

this thesis focuses on bulk properties, this will not be highlighted further.

2.4.3. Calculating the divergence of the magnetic field

This short chapter highlights the execution of derivatives in the particular FLAPW
basis chosen for Fleur and the problems that can arise when calculating them. Sym-
metrizations will be neglected for the moment and the assumed representations are
products of radial functions and spherical harmonics in the MTs and plane waves in
the interstitial region. That means, the magnetic field takes the same expanded form
as the charge density and potential in the previous section. The summation index j

represents the three cartesian directions of space.

Y BEelGr r € Interstitial

B(T) = I o
Yim,j € Bypu(r) Y™ (P,) e MTH

For use with the pre-programmed Poisson equation solver as described in 2.2.2,
the divergence of this magnetic field needs to be written in the same form as well.
To do so, the differentiation is executed separately for both regions. The derivatives
in the MTs are calculated according to a formula from [31]. The differentiation is
first executed in a natural coordinate representation corresponding to the spherical
multipole expansion at [ = 1 and then transformed back to the cartesian basis via a
transformation matrix T'. The natural basis is indicated by the m’ index, the cartesian
one again by j. The radial functions for the spherical harmonics expansion then take

the following form:

(V B)MT# 7“#) Z Z eJTem( 1)m

Jj=1m’=-1

Bl+1,m+m J
. ( d Bl+1 m+m’ ,j(ru) " (l +2) MTH (TM))Gm ;m+m/,—m/'
r

dr MTH [,l+1,1
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2.4. Specifics of the FLAPW method

d I-1,m+m/j Bl_17m+m,’j(r ) m,m+m’,—m’
+($BM7;# () = (1-1) = . . G

The factors G)"}"2"™ that appear in the summation are the Gaunt coefficients.

The coefficients and the transformation matrix are defined as follows:

1 0 -1
T-= E - 0 -
0 V2
G = [ a0 v @y @y o)

The rows of T' are counted from 1 to 3 while the columns are numbered as -1, 0 and
1. Considering that the potential generation conserves which Im-channels are occupied
(2.4.4) and another differentiation is done for the gradient afterwards, it is easy to
see that the procedure partially scatters contributions from each [ into the channels
with an orbital quantum number of [ + 2. This does not per se lead to a reduction in
symmetry for the system, but the intermediate quantities like the divergence used as
a source density do not have the same symmetry as the original magnetic field, which
needs to be taken into account by not using symmetrized expansions of the charge
density and potential to begin with. Additionally, as there is a cutoff of [,,,, for all
MT quantities, the correction to the highest components is not necessarily accurate.
The derivatives in the interstitial region are readily available, as they only amount to

a multiplication with the wave vector.

(V-B)g=iG-Bg

This simple derivation is also only possible when neglecting the construction of
stars, which becomes obvious when looking at the particular form of a star, that

takes several G into account.

2.4.4. Potential generation in the FLAPW basis

The all-electron full-potential method of DFT became feasible largely thanks to a
proper way of solving the Poisson Equation for a charge density given in the repre-
sentation from 2.4.2 [32]. A completely localized charge density in the MTs could

be used to construct the potential in a spherical multipole expansion, the interstitial
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part and the resulting transition between two mathematical expressions complicate
the situation and make the resulting boundary value problem more difficult to handle.

The density is first split up into these two contributions.

p(r) =pr(r)O(rel)+ 3 pu(r)O(r e MT")

The indicator functions ©(r € A) are either 1 or 0, depending on whether the point
r is within the volume A. This charge density can be replaced by a new one when
taking into account, that the potential in the interstitial is fully determined by the
interstitial density and the multipoles of its MT densities, not the explicit shape of
these densities themselves. The MT-densities are hence replaced by smooth pseudo-
densities with equivalent multipoles to ensure fast convergence of the corresponding

Fourier representation of the interstitial potential.

5(r) = pi(1)O(r € 1)+ Y 5 (r)O(r € MT¥)

The solution of the Poisson Equation for this density yields an interstitial potential,

that accurately describes the potential outside the MTs.

Vi(r) = Z Mé—(f’)eia""
G+0
The corresponding MT-potentials are then the solutions of the Poisson Equation
with the exact MT-densities and the interstitial potential as Dirichlet boundary val-
ues. In the spherical harmonics expansion, the radial parts of the potentials can be

written as:

Ryrrn

4
™ / dT”TQ,OZn(’T”)
0

20+ 1

"

!
Im _ e > I+ Im l
vin(r) - i (L= (e V) VI ) ()

Where r, = max{r,,r'} and r. = min{r,,r'}. Aside from the potential generation
from the total charge density, this procedure is also used to gain the correction po-
tential to project out source terms as sketched in 2.2.2. Two things need to be kept in
mind when the source density is used with the Poisson equation solver programmed

according to [32]:

a) When performing calculations with GGA functionals, the magnetic fields used
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for the derivative already have a contribution that stems from a differentiation in
real space. The fields are transformed back into the spherical harmonics/plane
wave representation, but especially in the MT discontinuities and noise resulting
from this will remain in the radial functions. A second and even third differen-
tiation of these functions, as it is done to find the correction to the field, can

lead to instabilities and problems with the convergence of the system.

b) By construction, the potential generation requires each radial function corre-
sponding to the angular quantum number [ in the density to be at least of order
[ -1 to ensure the integrals for the spherical multipole expansion are finite. A
differentiation by r reduces the order of a function by one and the derivatives are
scattered to one order above and below when calculating the divergence of the
magnetic field and the gradient of the correction potential. This is troublesome,

when terms of too low order are scattered to channels with higher [.

2.4.5. The SCF-loop in FLAPW

Regarding the remaining steps of the SCF-loop sketched in 2.1.6, there is one caveat
that needs to be addressed in FLAPW. Since the plane wave basis is augmented with
radial functions, the plane waves are no longer orthogonal, as the MT-part is cut out
off the integration. The contribution from the radial functions is non-orthogonal, as
in principle each function couples to all plane waves. Hence, there will be a non-

vanishing overlap matrix S(K) that needs to be addressed.

SYE(K) = (pa (K)lpa(K)) = [ d'r gl m)pa(K.1)

This results in a deviation from the simple by the books eigenvalue problem, yielding

a generalized eigenvalue problem of the form:

(h - E,,S)CKJ/ =0

This can, however, be transformed to a regular one by a Cholesky decomposition
of the overlap matrix and an appropriate modification of the Hamiltonian and eigen-
vector. After the resulting problem is solved, the eigenvalues are obtained and the
eigenvector can be found by transforming back.

The Fermi energy Ep, i.e. the energy up to which the bands will be occupied, is

calculated via Brillouin zone integration. The numerical equivalent to this is a sum
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over all occupied bands v and Bloch vectors K of the integrand multiplied by a set
of wave vector dependent weights w(K). It is required, that the total number of

electrons per unit cell NV is conserved in such an integration.

N=;ZMV(K)

The band dependent weights are defined as the product of the integration weights

and the Fermi function with a user defined Fermi smearing parameter kg7

1
ele(K)-Er)/(ksT) 4 1

w, (K) =w(K)

The Fermi energy is calculated iteratively by first taking the biggest Eigenvalue from
the diagonalization to find the number of occupied bands and from there matching it

to the electron number N until the conservation above is fulfilled.

N=2 2 w(K)

K v<voce
All wave functions below the maximal band index will contribute to the new electron

density. It is, in general, constructed as:

pr)=2 2w (B (K )

K v, (K)<Ep
There are many more delicate points to consider about constructing the quantities
for BZ integration and density generation in each specific region, but those consider-
ations are not the main point of this thesis. The density is mixed with the one from

the iteration before to yield the input for next one according to figure 2.1.
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elemental magnets

The quality and effects of projecting out magnetic source-terms and scaling the fields
need to be tested on materials, whose properties are well-known and in good agree-
ment between experiment and prediction. An obvious choice for such are the ele-
mental ferromagnets. These are body-centric cubic iron (bce-Fe), face-centered cubic
nickel (fce-Ni) and hexagonal close-packed cobalt (hep-Co). Those solids need no
special tools such as DFT+U or non-collinear magnetism to accurately find and de-
scribe their ground state, therefore they are easy to handle and are only treated in
a collinear fashion (albeit with spin-orbit coupling enabled). The materials will be
tested regarding different questions. In the original paper by Sharma et al. [2], the
procedure heavily impacts the magnetic moment per atom calculated with the Elk
code [3], reducing it to non-viable values using only the projection. The additional
scaling of the input magnetization density and the resulting magnetic field is done to
ensure the spin separation is strong enough to converge the densities. Only these two
methods used in tandem yielded good results for the elemental magnets and heavily
improved results for the more complex materials, that normal SDFT failed to describe
accurately. The following sections will each deal with one specific investigation like
the overall effect on the energy landscape and the question of the optimal scaling

parameter.

3.1. Effect of source-free magnetism on body-centric

cubic iron

Since the modification only changes the exchange-correlation magnetic field and leaves
the scalar potential unchanged, one would expect that the structure of the solid is not
fundamentally changed but only affected to a small extent. To test this assumption,

the dependency of the total energy per unit cell in relation to the lattice constant
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is tested in body-centric cubic iron. The constant is expressed in relation to the
experimental lattice constant of 2.8665 A and the resulting curve is fitted against the
Birch-Murnaghan equation of state (Appendix A) to obtain the minimizing lattice
constant. The scaling constants proposed in the original paper are 1.12 for the LDA
functional in [33] and 1.14 for the GGA approach of [34]. The following figures show
the curve for the unmodified case, the bare source-free modification and the same
modification with an additional scaling as proposed by Sharma et al. respectively.
Note, that the parametrization of the LDA functional is not the exact same as in

Sharma’s paper, but rather the one of Perdew and Zunger from [35].
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Figure 3.1.: Total energy per unit cell for different lattice parameters in PZ-LDA. The
minimal energy value from the collinear calculations F,,;, was subtracted.
The black dotted line represents the experimental lattice constant, while
the colored ones mark the optimized lattice constants for the data of the
same color.

The relevant parameters chosen for the calculations were k4. = 3.8, Gge =

Gmazze = 11.5, lpmaz = 8, lmaznonsph. = 6 and Ryr = 2.2 ap. The k-point grid was
initialized with 10 points in each direction, leading to a total of 1000 k-points. The
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3.1. Effect of source-free magnetism on body-centric cubic iron

curves are well behaved with respect to their overall form, with no strong deviations
from the collinear case, except for a surprisingly large shift of the minimum for the
source-free case. The additional scaling does not shift the minimum significantly

further. The GGA curves paint a different picture with higher impact by the scaling:
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Figure 3.2.: Total energy per unit cell for different lattice parameters in PBE-GGA.
The minimal energy value from the collinear calculations F,,;, was sub-
tracted. The black dotted line represents the experimental lattice con-
stant, while the colored ones mark the optimized lattice constants for the
data of the same color.

Two things are worth mentioning regarding the qualitative convergence of the fer-

romagnetic system.

a) The calculation takes at least twice as many iterations to converge when com-
pared to the collinear case. This is expected, as non-collinear magnetism inher-
ently yields more degrees of freedom for the energy landscape to vary in and
the modification via the source-term potential drastically changes the magnetic
field for every iterative step. Also, the runtime is several times longer, as the

Hamiltonian is no longer diagonal in spin-space.
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b) The convergence of the GGA functional is much worse than that of the LDA one.
The modification tends to amplify deviations of the magnetic moments from
high-symmetry directions and shifts the moments away from a pure alignment
along the z-axis. This will be discussed in detail when the magnetic moments
are analyzed in 3.2. It is known, that (at least for the Fleur code in particular)
PBE-GGA is not well-suited to treat non-collinear magnetism, as it was not
designed with more than the spin-up and spin-down densities in mind and the

handling of the magnetization derivative is ambiguous?.

Concerning the calculated lattice constant, it is easy to see that the removal of
source-terms reduces the optimal cell volume for both functionals, while scaling up
the fields leads to an increase. The overall curves for the modified calculations are
also shifted upwards. The specific position of the minimum and the shape off the
curve are sensitive to the interplay of the contributing energy terms, that of course
changes significantly when the magnetism is modified, so it is no surprise that all
fitting parameters are changed drastically for the source-free cases. Interestingly,
the scaling has a much less pronounced effect in the LDA case. The table below
summarizes the fitted parameters from the energy minimization and the resulting
magnetic moments. Columns with no subscript in the headers indicate collinear
calculations (LDA/GGA), the subscript SF stands for the source-free calculations
with no scaling and the subscript s indicates a scaling of 1.12 for LDA and 1.14 for
GGA calculations.

LDA LDASF LDASF’S GGA GGASF GGASF’S EXp.

ain A: 2.76 | 2.71 2.71 2.83 | 2.79 2.84 2.87 [36]
By in GPa: 236 | 251 248 200 | 235 279 169[37]
B} 3.670 | 2.626 | 3.565 8.562 | 1.623 1.000 /
My N fip 0 0 0 0 -0.03 0.01 /

My MT in UB 0 0 0 0 0.02 0.07 /
M.y iN g 1.99 | 1.48 1.81 223 | 1.73 2.16 /

M /atom in pp | 1.97 | 1.49 1.80 223 | 1.73 2.16 2.20 [38]
MSharma 0 i3 2.15 [ 1.91 2.22 2.27 [ 1.90 2.16 /

Special care needs to be taken when talking about the definition of the magnetic
moment per atom. The mean magnetization for each MT is readily available, while
for mono-atomic systems one could also look at the total moment per unit cell di-

vided by the number of atoms. Here, both values are given to see by what margin

4 As mentioned in the previous footnotes.
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3.1. Effect of source-free magnetism on body-centric cubic iron

they differ. The values are taken at the respective minimizing lattice for each case
as highlighted in the previous figures. The additional fitting parameters, the bulk
modulus B, and its pressure derivative B, are also given to quantify the change in
shape for the energy curve.

The table shows that the modification has a slight effect on the direction of the mag-
netic moment in the GGA case. The direction of the magnetic moments deviates from
the easy axis, which is a very undesirable effect and is not physically sound, as there
is no reason for this symmetry breaking. Since no such effect appears in the LDA
calculations, this can only be attributed to the interaction with the derivatives used
in GGA calculations. It was already mentioned in 2.4.4 that the repeated execution
of derivatives might prove difficult to handle and in the previous footnotes, that a
recent change was made to the definition of the gradient used, so this effect is not en-
tirely inexplicable. This will have a far more pronounced impact when talking about
antiferromagnetic structures. Interestingly, something similar happened to Sharma
et al. when investigating the bulk properties of nickel and cobalt in a follow-up work
[39], albeit they applied the [33] LDA functional. They did, however, not take special
note of this and did not investigate further.

It is well known, that the lattice constant that LDA calculations yield does not realisti-
cally describe the experimental findings for ferromagnetic iron [18] which is reflected
in the strong deviation of all calculated moments from the experimental value of
2.20pup. For the further discussion of the magnetic moments and other investigations,
all calculations will be done for the PBE-optimized lattice constant from the collinear
case, as it yields data much closer to the experimental value. The resulting moments

are summarized here.

Calculation: LDA | LDAgr | LDAgps | GGA | GGAsp | GGAgps
Mg M7 1N LB 0 0 0 0 0.03 -0.05
My mr i [ 0 0 0 0 -0.03 0.02
m, pr I B 2.15 | 1.75 2.12 2.23 1.84 2.19
Mo /atom in pp | 2.14 | 1.85 2.08 293 | 1.84 218
Manarma 0 fip | 215 | 1.91 2.22 2.97 | 1.90 2.16

These results are in better agreement with the Elk code used by Sharma et al.,
though the initial removal of source-terms seems to have a bigger impact overall.
The scaling reproduces very similar results in the GGA case, which is the easiest
to compare as it uses the exact same functional instead of a similar but different

parametrization. The moments averaged over each MT and the total moment per
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3. Testing the modification in elemental magnets

cell averaged over the atom count are also in sufficiently good agreement to warrant
using MT averages to define the notion of the magnetic moment per atom and will
be considered for the following tests. This is also important as the cell average will
be zero for antiferromagnets hence making the calculation of their moments only
possible in the MT by default. In the LDA case, the slight difference in cell and MT
moments shows that the interstitial carries a small negative moment. This means
all calculations can be slightly dependent on the MT radius, which is why it will be
kept as consistent as possible throughout further calculations. As a next step, it is
crucial to conserve the defining property of iron - being a ferromagnet - hence finding
a higher ground state energy for an anti-parallel alignment of spins in contrast to a
parallel one. As an example, the LDA case at the PBE-optimized lattice constant is

tested alongside the magnetic moment for the MT:

LDA LDAgp LDAgp
Eiot,rar in Ha -2541.1504556983 | -2541.1205073750 | -2541.1243080849
Brorara in Ha | -2541.1242373042 | -2541.1228041545 | -2541.1210011056

myr FM in UB 2.15 1.75 2.12
MMT AFM in UB +1.03 +0.0 +0.60
AF in mHa 26.2 -2.39 3.31

It is easy to see, that the source-free treatment acts very differently on ferro- and
antiferromagnetic iron. As opposed to the ferromagnetic case, it now leads to a de-
magnetization for antiparallel spins and the scaling of the fields does not recover the
magnetic moments nearly as good as before. The unscaled case even prefers the de-
magnetized state to the ferromagnetic one, which is not a physical result. The energy
difference is heavily influenced and far removed from the initial collinear value. This
means antiferromagnetic structures need to be handled with extra care and require a
sufficient scaling. It is very likely that this is true for all non-parallel spin structures
and may be significant when extending the scope of the treatment to more complex
materials. The same test was attempted for the PBE-GGA functional, but the afore-
mentioned general problems with non-collinear usage of GGA made converging the
system impossible and the spins stayed only roughly antiparallel, while the magnetic
moments did not show the same absolute value, meaning the configuration was not

antiferromagnetic anymore.
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3.2. Optimal scaling parameters in Fleur

3.2. Optimal scaling parameters in Fleur

Now that the impact of the scaling on the resulting quantities and fields has been
highlighted, it is essential to find an 'optimal’ scaling for the Fleur code. This differs
from the optimal scaling in the Sharma paper, as they employed the Elk code to
compute their results and a different LDA functional is chosen. The main difference
is the treatment of magnetism in DFT as a whole. While Elk treats magnetism
in 2nd variation as a perturbation after a non-spinpolarized spin basis is found for
a first run, Fleur is based on the approach of a spin-polarized basis with up- and
down basis functions. The determined scaling was found to be roughly universal
across the materials studied in the paper. It is, however, not a physical but rather a
computationally motivated variable, that needs to be redetermined for the different

framework used in this thesis.
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Figure 3.3.: Magnetic moment per iron atom in bee-Fe for different scaling parameters
s. The dotted black line represents the experimental value and the colored
ones mark the moments for collinear calculations with PZ-LDA and PBE-

GGA respectively.
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3. Testing the modification in elemental magnets

The term 'optimal’ is defined here in the sense, that the scaling for each functional
exactly meets the calculated value of the magnetic moment per atom from the un-
modified collinear case. While Sharma et al. based the optimization on a fit to the
values for bce-Fe and the more complex BaFeyAs,, this thesis will instead focus on
the three elemental magnets, as they are well understood and therefore form a good
basis for the extension to more complex materials.

Figure 3.3 shows the scaling dependency for iron with both functionals. The experi-
mental moment, the moment calculated for the collinear LDA and the collinear case
are shown as dotted lines. For this system, the optimal scalings can be determined
both for finding the exact experimental moment per atom and alternatively by repro-
ducing the calculated moment from the non-modified collinear case in a reasonable
range. The curves look remarkably similar, with the exception that the GGA calcu-
lations form a lot less smooth curve. The resulting values for the possible scalings

are:

Functional: | LDA | GGA
Sexp. 1.150 | 1.145
Scol. 1.139 | 1.152

The scalings are somewhat similar to those found by fitting the experimental mag-
netization against the scaling for iron and BaFeyAss in the original paper. For the
LDA case, they are a bit larger, which can be attributed to the different functional
parametrizations. In the GGA case, they are nearly the same. But he convergence
was, again, much more difficult to handle in the GGA case. The calculations never
quite finished and were stopped, when at least the magnetization and total energy
values settled to a non-fluctuating value.

Nickel, on the other hand, is a different matter. While the convergence for iron was
significantly worse for the GGA functional when compared to LDA, it is hardly given
at all in the case of nickel. The moments fluctuate wildly with increasing s and no
optimal scaling can be determined, because the magnetic moments, that are supposed
to be ferromagnetically aligned and therefore of the same magnitude and direction,
vary significantly. Albeit a general upward trend can be observed with increasing s
just like for bee-Fe. Due to this lack of convergence with GGA, only the LDA scaling

curve is shown and evaluated. The results are shown in figure 3.4:
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3.2. Optimal scaling parameters in Fleur
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Figure 3.4.: Magnetic moment per nickel atom in fce-Ni for different scaling parame-
ters s. The dotted black line represents the experimental value and the
blue one marks the moment for a collinear calculation with PZ-LDA.

This becomes even worse in cobalt, where the more complex hep structure prohibits
convergence entirely for GGA calculations. Here, not even an overall positive trend
for the relation moment vs. scaling can be found, as the magnetic moments first get
smaller and then rise again in what resembles a parabola. So figure 3.5 again only
shows the LDA scaling curve, which is reasonably smooth and stems from converged
calculations.

In both the fcc and hep cases, the experimental value is not reached before the curve
flattens, implying that much higher factors would be needed to find the exact value.
This further incentivizes defining the optimal scaling with respect to the value from
the collinear case. The resulting values are summed up below and can be averaged

with the one from bce iron to find the mean optimal scaling between the three.
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Figure 3.5.: Magnetic moment per cobalt atom in hep-Co for different scaling param-
eters s. The dotted black line represents the experimental value and the

blue one marks the moment for a collinear calculation with PZ-LDA.

Scaling | Value
Spo 1.139
SN 1.160
500 1.151
Savg 1.150

By a simple average of the three distinct values, the resulting optimal scaling is
roughly 1.15. This differs from the one found in [2], which is not surprising considering
the functional parametrization used is not identical and the reference systems are
different. An optimal scaling for GGA calculations can not be determined, so for the

rest of this thesis all source-free calculations will be done for the LDA functional.
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3.3. Improved Antiferromagnets and Discussion

With the optimal scaling determined for three ferromagnetic structures, the question
arises whether the factor is also suitable to describe source-free antiferromagnets. An
earlier investigation showed, that a scaling of s = 1.12 was not sufficient to accurately
describe antiparallel spins in bce iron and with no scaling the system tended towards
demagnetization. The table below shows as before, the corresponding total energies

and magnetic moments but for the optimal scaling of s = 1.15.

Calculation: LDA LDAgp115
Eiot par in Ha -2541.1504556983 | -2541.1263266865
Eyorara in Ha | -2541.1242373942 | -2541.1181114581

murr M in UB 2.15 2.16
MMT,AFM in UB +1.03 +0.86
AF in mHa 26.2 8.22

The magnetic moments of the antiferromagnetic case are reproduced a lot better
for the higher scaling. There is still a reduction, but it is less pronounced and an even
higher scaling would likely remedy this.

To summarize the core results of the testing on elementary magnets, the following

points will be used as a guideline for achieving the best results:

a) The most realistic lattice constants and magnetic moments are found for an

energy minimization with the PBE-GGA functional.

b) The actual calculations for source-free magnetic fields need to be done with the
PZ-LDA functional, as the use of PBE-GGA with this form of non-collinear
magnetism is highly unstable and the calculations do not converge smoothly or

at all depending on the complexity of the system °.

¢) The optimal scaling constant for the fields, as proposed by Sharma et al., in
this case is roughly 1.15. This value is able to approximately reproduce the

magnetic properties of the elemental ferromagnets in the source-free case.

d) Antiferromagnets are not described very well with LDA functionals, but as the
PBE-GGA breaks down completely for source-free antiferromagnets, this is the
only option to use. Non-parallel spin structures will have to be handled with

special care.

>This might very well be cured with the change mentioned in footnotes 2 and 3 on page 10
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4. Source-free iron pnictides

In the original paper, the source-free modification of the exchange-correlation mag-
netic field showed particular success as a means for the description of iron oxypnictides
of rare earth metals and iron pnictides of alkaline earth metals. These are materials
formed from metallic cations and anions containing elements from group V of the
periodic table, the nitrogen family. Materials from this class have risen in interest in
recent years for their exotic qualities with respect to magnetism and superconductiv-
ity. For example, LaFeAsO was shown to exhibit both long-range antiferromagnetic
ordering and superconductivity when doped with hydrogen [10] or flourine [11] in
the oxygen sites or with cobalt in the iron sites[40], depending on the temperature,
external pressure [12] and doping concentration. As Sharma et al. pointed out, the
description of the electronic structure of these materials in a DFT framework was
far from accurate, producing values for the magnetic moment on the iron atoms that
were up to 275% too big in [2]. This of course is symptomatic for a completely in-
accurate representation of the system in the context of its more exotic properties.
In the Elk code, they used the source-free treatment to great success, reducing the
root-mean-square percentage error (RMSPE) across all the materials they studied to
6% for source-free LDA and 11% for source-free PBE-GGA, albeit with an additional
DFT+U treatment for two of the materials. This chapter will deal with the analysis
of LaFeAsO and CeFeAsO, two materials with symmetry according to the Cmme
space group, and CaFesAs,, SrFesAsy and BaFeyAsy from the Fmmm space group as
examples for the effect of the source-free fields on rare earth oxyarsenides and alkaline

earthe diarsenides respectively.

4.1. Pnictides from the Cmme space group

At low temperatures, XFeAsO crystallizes in an orthorombic lattice with a basis
according to space group 67 (Cmme). X represents the lanthanide in the pnictide.

The unit cell contains 16 atoms and looks as follows for lanthanum:
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4.1. Pnictides from the Cmme space group

Figure 4.1.: Unit cell of LaFeAsO (Cmme) plotted in XCrySDen [41]. The grey
spheres represent lanthanum atoms, dark red is iron, yellow is arsenic

and bright red is oxygen.

It forms a layered structure with oxygen atoms embedded in a lanthanum bilayer
interchanging with an identical setup of iron atoms embedded in arsenic. The iron
atoms in this material are shown to exhibit ferromagnetic order in the shortest axis (x)
and antiferromagnetic order in the other two [42]. That means to accurately describe
the internal magnetism, a magnetic unit of doubled size in z-direction with 32 atoms
is needed. The lattice parameters and atom positions (in internal coordinates) for the

single cell are taken from experiments done at 4 K in [40]:
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4. Source-free iron pnictides

Lattice parameters

ain A 5.6823

bin A 5.7103

cin A 8.7117
Wyckoff representatives

La at 4g (0,1/4,0.1424)
Fe at 4b (1/4,0,1/2)
As at 4g (0,1/4,0.6501)
O at 4a (1/4,0,0)

Each representative is paired with a partner shifted by 1/2 in the y-direction and
a negative sign in the z-direction. Additionally, for each of them there is another
partner shifted by (1/2,1/2,0). Using these values, a first run of test calculations
Gmam,:pc = 907 lmax = 107

lmaz.nonsph. = 8 for lanthanum, {0z = 8, Lnaz.nonspn. = 6 for iron and arsenic and {4, = 6,

was done with the following parameters: k4, = 3.0, Gae =

lmaz.nonsph. = 4 for oxygen. The respective Ry are 2.78, 2.20, 2.21 and 1.57 ay. The
k-point grid was set to a low value of 4 x 4 x 2 to quickly check the trends of the
calculated magnetizations. For all calculations, a universal smearing of 0.027 eV was
applied. All calculations were done with spin-orbit interaction taken into account.
The y-aligned antiferromagnetism proposed in several papers was also used to start

a separate calculation for comparison.

MpT,Sharma in UB 1.60 0.73 / 0.63
Myt -AFM in UB 1.17 0.54 0.72 /
MMT,y-AFM in uB 0.95 / 1.57 /

At first glance, the magnetic moments trend toward the right direction. The initial
moment is corrected downwards in the source-free case and reproduces the experi-
mental one a good deal better. The moments for pz-optimized scaling in Fleur and
PW92-optimized scaling in Elk are highly similar. Interestingly, the initial moments
without the modification are a tad closer to the experimental value when calculated
in Fleur as compared to the Elk code. Using the proposed in-plane antiferromag-
netism also improves the result, while the modification makes the prediction worse
for this setup. The impact of this simple rotation will be further studied in section
4.3. For the best possible comparison to the known results, the z-aligned case will be
studied further with the optimized scaling from this thesis. This is also encouraged

by comparing the total energies per unit cell for the different orientations.
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4.1. Pnictides from the Cmme space group

LDA LDAgp 15

Eiot,» in Ha | -96757.7695474055 | -96757.7477071383
Eioty in Ha | -96757.7646900703 | -96757.7423870604
AF in mHa | 4.86 5.32

The comparison shows, that the z-oriented case is energetically slightly preferable
for this exact setup, which of course may be very dependent on the optimized lattice
parameters in each direction, but the comparison to the Elk code results is the most
sensible with the same z-orientation, so it is be used here as well. Before running
more calculations, first the k-point set is made finer to check whether the resulting

values are converged or still change. The new sets are 6 x 6 x 3 and 8 x 8 x 4 points.

LDA | LDA+SF; 15
MupTaxaxe 0 pp | 1.17 | 0.72
MMT,6x6%x3 in B 1.19 0.71
MuyTsxsxa i pp | 1.16 | 0.72

While the values fluctuate a little, which can be due to the complexity of the sys-
tem, the differences are not very large. The chosen k-point set therefore is big enough
for a qualitative comparison of some more similar materials to verify the quality of
the modification and another enlargement is not warranted.

There are several other pnictides with the same unit cell structure but with a dif-
ferent lanthanide as its basis, in the following case CeFeAsO. It shows a similar
antiferromagnetic pattern for the iron atoms in the longer planar direction but ferro-
magnetic order with respect to the other two axes. Additionally, the cerium atoms
carry their own magnetic moment and also order accordingly, though in an orthog-
onal instead of antiferromagnetic fashion [44], forming an intricate pattern for the
magnetism. Different sources, however, propose different low temperature structures.
The paper from which the lattice parameters are taken [44] notes moments flipping
their y-component with respect to moving in the x-direction, while a newer paper
[45] from which the reference value of mp. is taken reports x-flips in the x-directions
and additional y-flips in y, while the iron atoms align orthogonally to them instead
of pointing in the x-direction. The calculations for the rest of this chapter are done
for the k-point set of 6 x 6 x 3, moments initially aligned in the z-direction and a
scaling of s = 1.15 for source-free Fleur calculations. The MT radius for cerium is
again 2.78 ay and the Wyckoff z-coordinates are zg, = 0.1402 and z44 = 0.6553 for
a unit cell with lattice parameters a = 5.66263 A, b = 5.63273 A and ¢ = 8.64446 A
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4. Source-free iron pnictides

at T'=1.4 K [44]. Due to the added magnetism from the cerium atoms coupling to
that of the iron, the internal magnetic structure becomes more complicated and the
convergence of the ground state density is slower and more sensitive than in the case
of non-magnetic lanthanum. The results from [2] do not mention a magnetic moment
for cerium, but only for the nearest-neighbour compounds with praseodymium and
neodymium (which were then treated with an additional U parameter to account for

the strong correlation) so the moment cannot be compared to their findings®.

LDA | LDA+SF | Exp.
Myt Sharma in UB 1.64 0.81 0.8 [45]
MpyT, Fe in UB 1.26 0.93 /
muyr,ce in UB 0.07 0.20 /

It is worth noting, that for the base case the cerium moments are heavily suppressed
and only start to emerge with the source-free modification. They align antiferromag-
netically along the x-axis, changing directions along the y-axis, while the iron moments
align along the z-axis and interchange in x-direction. This picture is different from
those found in both reference papers. The magnitudes of the iron moment and its
improvement by the modification is very similar to the lanthanum case, in that the
unmodified prediction is a bit better than in the Elk case, while the modification
brings Elk closer to the experimental value here (if the referenced value from [2] is
used). To verify the notion that this trend persists across more materials, the next

section will deal with a different class of pnictides.

6The citations in the original paper are somewhat off here. The experimental value in the paper
Sharma et al. cite is not 0.8 - a value of 0.81 is found in the paper from which they reference the
experimental structure data.
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4.2. Pnictides from the Fmmm space group

4.2. Pnictides from the Fmmm space group

While the first to cases of pnictides were lanthanide iron oxypnictides, containing
an equal amount of each constituent per unit cell, Sharma et al. also considered
a closely related class of materials formed from alkaline earth metals and twice the
amount of iron and arsenic per unit cell. These diarsenides also exhibit the same
form of long range antiferromagnetic order in the iron sublattice for the two longer
crystal axes, but crystallize in a slightly different structure according to the 69th
space group (Fmmm). The main constituent metals show no magnetism, due to their
lack of unpaired electrons, and the complete magnetic order is contained within the

chemical unit cell (4.2) for low temperatures.

Figure 4.2.: Unit cell of Fmmm structures like BaFeyAsy plotted in XCrySDen|[41].
The blue spheres represent the alkaline earth atoms, dark red is iron and

yellow is arsenic.
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4. Source-free iron pnictides

This means the three materials in question, containing calcium, strontium and
barium respectively, are largely similar in structure and properties. The unit cell
looks similar to the lanthanide case, but this time with two layers per cell of iron
nested in arsenic. The structure in question has a slightly increased atom count of 20
per unit cell as opposed to the 16 that fit into the rare earth pnictides’ cmme cell. The
structural data used to describe the unit cell is summarized below for AE=Ca[46],
Sr[47], Bal48].

Lattice parameters AE=Ca | AE=Sr | AE=Ba
ain A 5.5312 5.5783 | 5.5447
bin A 5.4576 | 5.5175 | 5.5773
cin A 11.683 12.297 | 12.852
ZAs 0.3689 0.3612 | 0.3575
Tin K 50 90 33
Wyckoff representatives

AE at 4a (0,0,0)

Fe at 8f (%l,i,%l)

As at 8i (0,0,245)

The 8f and 8i coordinates have partners with the same coordinates negated and the

resulting five atoms each have partners at (0,1/2,1/2), +(1/2,0,1/2) and +(1/2,1/2,0)
for a total of twenty per unit cell. However, caution needs to be taken when com-
paring these structures to the ones from the previous section. The calculations were
done according to the parameter choices from the section before with the additional
parameters of Ry ap = 2.8 and the [, ap the same as for lanthanum and cerium.
The temperatures for which the alkaline earth compounds were examined are signif-
icantly higher than for the rare earth pnictides and the usage of the same smearing
parameter (that directly relates to the temperature) as it was done in [2] is not nec-
essarily sensible.
Considering that only the iron atoms are magnetic and are therefore the only relevant
part for the cells internal magnetic structure, the convergence was smoother than in
the case of the doubled unit cell of LaFeAsO or the magnetic cerium interaction in
CeFeAsO. The results, compared to the ones from Sharma et al. and experimental
findings ([49],[50],[51]) are as follows:
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Figure 4.3.: Magnetic moment per iron atom in alkaline earth pnictides.

Several things can be noted here. For one, the initial prediction of the magnetic
moments within the Fleur code is a bit lower, matching the very low pnictide mo-
ments better than in the Elk case but still being more than a third too big. Second,
the source-free modification reduces the moments in both cases so they are far closer
to the experimental values, with the agreement getting better with increasing atomic
number in both frameworks. Third, the matching of the barium moment is perfect as
computed with the Elk code. This is due to the fact, that BaFe; As, was chosen along-
side iron to find the optimal scaling parameter that was then used for all calculations.
As this thesis opted to instead base the scaling on all three elemental magnets as the
most unbiased basis, the agreement is of course not as great. Considering this last
fact, the improvement can be seen as in good agreement with the results from [2] and
the general notion, that the initial description is a bit better in Fleur, is reinforced.
This can be best seen when looking at all calculated moments with respect to their

percentage deviation from the experimental value.
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4. Source-free iron pnictides
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Figure 4.4.: Percentage deviations of iron magnetic moments in rare earth/alkaline

earth pnictides.

Except for the case of LaFeAsO, where the magnetic moments in both codes become
roughly equal in the source-free variant, the aforementioned trend is obvious. Another
point to note is that the level of improvement is vastly different across the different
materials. LaFeAsO and CaFeyAsy are improved to around the same deviation while
CaFeyAsy started with a better initial description to begin with. This also differs
between the two frameworks. The calcium moment shows the worst improvement
across the five materials studied, but the percentile deviation is only half as big when
computed with Elk. These and several other points highlighted so far will be discussed

in the final section of this chapter.
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4.3. Lattice optimization of CaFeyAsy

4.3. Lattice optimization of CaFe)As,

In chapter 4.1 it was noted, that the calculations in [2] yielded magnetic moments
aligned along the z-axis rather than the antiferromagnetism along the x-axis found
for the low temperature phases of most of the pnictide superconductors. In the same
chapter, an improved magnetic moment could also be found for LaFeAsO by adhering
to this proposed order and without the application of the source-free modification.
The following short section serves as a check, how much of an improvement can be
gained this way combined with a thorough lattice optimization in both the lattice
parameters and the relative height of the referential arsenic layer z,, of CaFeyAss.
As this material was described worst by the source-free modification and is the most
manageable in terms of its internal magnetism and electron count, the calculation is
made easier than for the other four. The parameters were kept mostly the same in
comparison to the last section, but the k-point set was refined to 16 x 16 x 8 and, as it
is more suitable for structure optimizations, the functional used was PBE. First, the

general direction in which an optimization is needed the most is analyzed:
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Figure 4.5.: Energy landscape in CaFeyAs, for the different lattice parameters.
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4. Source-free iron pnictides

According to this figure, an optimization in lattice parameter a is most significant
due to the steepness of the curve, ¢ is the next most significant and (under the
assumption of non-interference between the three) an optimization in b will not yield
much change, since the minimum is already somewhat well met at the experimental
value. Therefore the structure optimizations will be done in the order: a - ¢ - z4,.

Figure 4.6 shows the optimization with respect to a:
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Figure 4.6.: Energy landscape and magnetic moments of CaFesAsy with respect to
the lattice parameter a. The blue energy curve adheres to the scale on
the left side of the figure and the magnetization values are found on the

right.

The energy curve shows a distinct minimum. The magnetic moments increase with
growing separation, as can be expected of the antiferromagnetic structure embedded
in the lattice. Interestingly, the increase shows a very distinct linear trend. The
optimized value is roughly a = 5.558 A and gives a magnetization value of 1.79.5.
Next, the minimization in ¢ (figure 4.7) is added. The optimized parameter a is

already taken into account.
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Figure 4.7.: Energy landscape and magnetic moments of CaFeyAsy with respect to
the lattice parameter c¢. The blue energy curve adheres to the scale on
the left side of the figure and the magnetization values are found on the

right.

As there are two antiferromagnetically aligned layers of iron atoms in the CaFeyAs,
unit cell, the reduction of the magnetic moment with decreasing distance is again quite
natural. A linear trend is again visible, although with a significantly lower slope.
This is most likely due to the overall increased distance between the iron atoms in
¢ direction and the atom layers between them. The optimized lattice parameter is
¢ = 11.538 A. The last optimization is done with both optimized lattice parameters
fixed.

Figure 4.8 shows the last curve and highlights the sensitive dependence of the magnetic
moment per iron atom on the interatomic spacing inside the cell. While the moment
varied by < 0.2 up for expansions and compressions of one spatial direction by up to
3%, the 1% changes in the layer position vary it by around 0.35 pupg. So while the

magnetic moment is very sensitive to all three optimizations, the last one has the
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4. Source-free iron pnictides

most profound impact. The optimized height for the representative arsenic atom is
around z4, = 0.3675.
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Figure 4.8.: Energy landscape and magnetic moments of CaFeyAs, with respect to the
position of the representative arsenic layer z4,. The blue energy curve
adheres to the scale on the left side of the figure and the magnetization

values are found on the right.

The results of the minimization with respect to the calculated magnetic moment
are found in the table below. All moments are given in multiples of pg and mg refers

to the non-optimized calculations done for the experimental lattice parameters.

Mexp 0.8

M Sharma | 1-86
mo 1.76
Ma opt. | 1.79
Mo opt. | 1.72
M ot | 1.65
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4.3. Lattice optimization of CaFeyAsy

There are two key observations here. The moment is sensible to structural changes
but ultimately not much different too the reference case, as the experimental lattice
constants and the PBE-optimized ones are very close. Also, the expansion in a and
compression in ¢ compete in changing the moment up- and downwards. Also, the
calculated moment agrees well with the one found in [2] for the unoptimized case.
This means, that taking the x-alignment into account did not lead to a major change

in the description of the complex magnetism in CaFegAss.
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4. Source-free iron pnictides

4.4. Discussion

In [2], Sharma et al. proposed the manual removal of source terms from the magnetic
field motivated by theorems from CDFT that state the equivalence of varying the
magnetic moment and its curl for certain properties. They identified the problems
in the description of pnictide magnetism as stemming from unphysical source terms
in the exchange-correlation magnetic field. The previous sections showed, that the
removal of these terms does indeed improve the calculated moments, but that is not
necessarily saying the assumption is verified. The procedure was shown to affect
ferromagnetic and antiferromagnetic structures very differently in the sense, that
the ferromagnetic moments for the elemental magnets are closely reproduced for an
appropriate scaling, while the same scaling reduces the magnetic moment per atom
for an antiferromagnet to a significant degree. This can directly be observed for
the pnictide materials, which are all exhibiting antiferromagnetic ordering of the iron
atoms in the x-y-plane, as the predicted moments for each of them is reduced and none
are enlarged. So it stands to reason, that the improvement is somewhat constructed
and not a natural consequence of adhering to the laws restricting physical magnetic
fields.

Another matter is the overall structure of the pnictides. Experimentalists showed
that for each of the materials in question an antiferromagnetic ordering occurs along
the short in plane axis (also pointing in the same direction), baring exceptions like
the complex ordering in CeFeAsO and the additional antiferromagnetic ordering in
the z-axis of LaFeAsO. A visualization of the magnetic fields in [2] clearly shows, that
the magnetic moments point perpendicular to the iron layers, while the alignment is
in agreement with the experiments. This means the ground state structure differs,
making deviations of the magnetic moments between experiment and the DFT result
more likely. It was shown, that for LaFeAsO the magnetic moment could already be
improved by a significant amount by considering the experimentalists ordering (4.1),
but a further investigation of this effect for CaFeyAsy showed that this was not a
universal trend. This is also not the only factor that needs to be taken into account.
Earlier DFT investigations of the high temperature phase of LaFeAsO also relied on
a description with an additional U parameter [52] as did calculations done for doped
pnictides [53].

As a last short remark, the overall better quality of the unmodified Fleur calculations

as opposed to Elk can be justified with one of the central differences between the
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4.4. Discussion

structure of the two codes. Fleur relies on an explicit treatment of magnetism through
a spin-polarized basis set, while Elk uses a second variation scheme founded on a non-
spin-polarized one. The latter treatment inherently assumes that magnetic effects can
be treated as a rather small perturbation. In the case of complex magnetism between
four to eight iron atoms per unit cell, it becomes increasingly questionable to speak
of such a small perturbation and it is sensible, that the somewhat more elaborate

spin-polarized basis yields better results.
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5. Magnetic ordering and coupling in

source-free iron

Initial investigations in chapter 3.1 showed that the source-free modification and the
scaling of the magnetization density and magnetic field had a noticeable impact on the
lattice constant of the ferromagnetic iron crystal. The impact was more pronounced
for the PBE-GGA functional, that proved difficult with respect to the removal of
source terms and was not used for further calculations, but was also present in the
PZ-LDA structure. Furthermore, antiferromagnetic bec iron was also inspected to find
that the energy difference between the FM and AFM state was significantly altered
when source terms were removed and the antiferromagnetic moments were highly
reduced instead of roughly conserved like for the ferromagnet. In the light of these
findings, the following chapter will further investigate the ground state properties of
elemental iron structures. It is a well tested result, that the local density approxima-
tion predicts iron should crystallize in a fce ground state structure (y-iron), which is
a state found in experiments only for heated iron, and not in the well documented bcc
structure (a-iron). This holds true for the implementation in the Fleur code as well.
It will be shown, whether or not the impact of the modification as significant enough
to change this fact. Additionally, the alteration of the magnetic coupling constants

in a Heisenberg model will be examined closer.

5.1. The Source-Free iron ground state

The first two structures under consideration are the most basic (anti-)ferromagnetic
ones iron can form, the bee and fee crystals. That means in the first case, one atom
is inserted into the middle of a simple cubic structure and in the second case one sits
in the middle of each face. Since the atomic radius of iron does not change for the
different structures, the fcc one is necessarily larger and the unit cell needs to be set

up accordingly. To adjust for this fact, the reference lattice constant for bec iron is
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5.1. The Source-Free iron ground state

taken to be the experimental value of 2.8665 A and the one for fcc is scaled up by
a factor of \/3/_2 according to considerations done for a hard sphere model of both
structures. In both cases, the antiferromagnetic structure was taken to be one with
layered ordering, meaning the atoms located at z = 1/2 were initialised with opposite
spin to the ones at z = 0 and z = 1. The calculations were all done for the same set
of initial parameters to gain maximal comparability. Most notably the choice was
Ryr = 215, kpaz = 4.0, Gz = Gz xo = 12.0, lnae = 8, Lnaznonsph. = 6, s = 1.15
and a k-point set of 16 x 16 x 16. The ferromagnetic calculations were started for an
initial moment of 2up and the antiferromagnetic ones with £1.5up per iron atom.

The results for the bee structures are shown in figure 5.1.
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Figure 5.1.: Total energy per atom in bce-Fe for source-free and collinear magnetism
as a function of the lattice constant.

As noted before, the modification raises the overall energy level for both ferromag-
nets and antiferromagnets. The antiferromagnetic calculations, however, yield small
lattice constants. They also converge to the exact same value, implying that the

source-free ground state is equal to the unmodified one. This can only happen for
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5. Magnetic ordering and coupling in source-free iron

vanishing magnetism. To verify this notion, the average magnetization per muffin tin

is plotted against the lattice scaling as well.
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Figure 5.2.: Magnetic moment per atom in bce-Fe for source-free and collinear mag-
netism as a function of the lattice constant.

Several properties need to be highlighted here. First, the magnetic moments for the
ferromagnetic case are highly similar between the collinear reference calculation and
the source-free modification. Especially around the PBE-optimized lattice constant,
this is obvious by construction, since the scaling s constant was fixed to achieve this
effect. It is notable, however, that the overall curve is very similar in its entirety.
For the antiferromagnet, the figure shows that a compressed lattice leads to a de-
magnetization of the system and an actual antiferromagnetic order only arises from
a certain minimal lattice constant upwards. It then increases approximately linear in
strength with the lattice constant for both the modified and unmodified system, with
the source-free magnetism having overall smaller moments. This is in agreement with
earlier findings, that the optimal scaling for ferromagnets does not perfectly recover

antiferromagnets as well but rather still weakens them for the optimal scaling. This is
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5.1. The Source-Free iron ground state

also reflected in the onset of antiferromagnetism being shifted towards higher lattice
constants, meaning the lattice needs to be stretched further to allow the order to
set in. With the investigation of the actual magnetic order found for the different

calculations, the picture of the energy landscape changes.
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Figure 5.3.: Refined total energy per atom in bee-Fe for source-free and collinear mag-
netism or non-magnetized states.

This means, that in the unmodified case, bee iron will crystallize as a ferromag-
net with a lattice constant of around 2.76 A, while the source-free structure favors a
non-magnetic state with a lowered lattice constant. The minimal distance between
the iron atoms with upward and downward polarization that makes antiferromag-
netism possible (and coincides with the nearest-neighbour distance) is calculated to
be roughly 2.358 A for a normal collinear antiferromagnet and 2.480 A for the source-
free structure.

The same investigation is done for fcc iron with a scaled up reference lattice constant
of 3.5107 A. No other parameter was changed and the initial results are shown in

figure 5.4. The curves for different starting conditions all converge towards lower
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5. Magnetic ordering and coupling in source-free iron

lattice constants and identical energy values, implying that again the system tends to
be non-magnetic for a compressed lattice and this time even the ferromagnetic phase
can only form for high enough distances between the iron atoms. I.e. the energy
minima for all curves coincide and a non-magnetic state with a lattice constant of

around 3.38 A is assumed.
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Figure 5.4.: Total energy per atom in fcc-Fe for source-free and collinear
magnetism/non-magnetism as a function of the lattice constant.

Figure 5.5 shows the behaviour of the magnetic moments in the fcc case. It is again
validated, that the smallest lattices show no magnetism at all. Interestingly, the
relation between the unmodified collinear and source-free case is vastly different from
the bee structure. While a minimal lattice constant is needed again to magnetize
the system, the ferromagnetic phases are much less similar than before and for an
expanded lattice the source-free moment is greatly enlarged when compared to the
standard calculation for intermediate lattice constants. For bigger lattice expansions
they appear to reconverge. This means, that the similarity between the conventional

and source-free moments found before is exclusive to the bece structure and, more
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5.1. The Source-Free iron ground state

generally, there is no simple relation between the collinear and modified moments.

The harsh reduction of antiferromagnetic moments in again visible nonetheless.
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Figure 5.5.: Magnetic moment per atom in fcc-Fe for source-free and collinear mag-
netism.

The shift of a,,;, is also a lot more pronounced here than in the case of bcc iron for
the antiferromagnet and the moment is reduced even more significantly. The mini-
mum distance for the collinear antiferromagnet is around 2.4550 A, the modification
increases this to 2.5542 A. The ferromagnetic state will form for a distance greater
than 2.5406 A. From this an important observation can be made. The removal of
source-terms and its impact on the magnetic order of a system is not only dependent
on whether a ferro- or antiferromagnet is examined, but also on the arrangement and
distance of the magnetic atoms within the lattice. The overall trend that can be seen
is, that the modification disfavors magnetism as a whole and in both investigated
cases reduces the resulting moments for antiferromagnetic structures. This informa-
tion will be crucial in understanding, why the modification works the way it does. In

short, it can be noted that the source-free antiferromagnetism is suppressed while the
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5. Magnetic ordering and coupling in source-free iron

ferromagnetism is (especially for the bee structure) closer to its original strength and
this might very well be the effect responsible for improving the description of pnic-
tides, as their iron atoms are antiferromagnetically aligned and all their calculated

moments are too high initially.
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Figure 5.6.: Energy landscape for optimized bee/fec iron structures with and without
source terms.

As a conclusion to this section, figure 5.6 shows the complete energy landscape for
the different optimized iron structures. The fact that LSDA DFT predicts iron to
assume a non-magnetic fcc ground state is not changed by the removal of magnetic
source-terms. Considering the fact, that the modification is not supposed to affect
non-magnetic states this is not all too surprising. The impact on the exact moments
and optimal order on the other hand is profound in antiferromagnets and ferromag-
netic fce structures. For the bece structure the already too low ferromagnetic lattice
constant is further reduced and a non-magnetic state is predicted to be slightly favor-
able. This speaks against the validity of the modification, as it would be desirable to

not worsen the calculated properties of simple materials with respect to experimental
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5.1. The Source-Free iron ground state

results only to improve the description of more exotic ones. This would be akin to
fixing the U parameter of a DFT+U calculation such that it perfectly reproduces
experimental findings. The exact impact on the ordering behaviour in iron struc-
tures will be further analyzed in the following section, with respect to the coupling

parameters governing the interaction in a generalized Heisenberg model.
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5. Magnetic ordering and coupling in source-free iron

5.2. Coupling parameters from different magnetic iron

structures

To quantify the claim, that projecting out the source fields influences the way an iron
structure will order, this section deals with the calculation of coupling parameters
in a Heisenberg model from the total energies of different (anti-)ferromagnetic iron
crystals. This is not by all means an accurate model for the complex magnetism
as treated in DFT by FLAPW, as magnetism in the interstitial region is explicitly
allowed and contributes to its overall magnetic moment, but for this purpose it will
suffice. The focus will be on bce and fee type structures in a layered magnetic order.
In the Heisenberg model, the magnetic ordering will then be governed by the number
of atoms per unit cell and the number of neighbours with the same and opposite spin

that they have. This simplifies the formulae in chapter 2.3 to:

n.—n.n.

Eeen = Eo - JlS2 Zo—l(N;an - N?in) - ‘]252 ZUZ(NA—TLTL - N} )

Where ¢ counts the atoms in the unit cell and o; = £1 depending on whether atom 4
has a positive or negative moment. The numbers N, denote how many nearest/next-
nearest positive/negative neighbours atom ¢ has. To calculate the couplings J 5, one
needs three differently aligned structures of the same size. For the bcc case, the setup
consists of five layers of iron atoms (three of which constitute a standard bec structure
with two atoms per unit cell like in the previous section) with a total of four iron
atoms needed to uniquely describe the structure. This essentially means doubling the
stochiometric unit cell (in z-direction) and setting up a tetragonal structure. Measured
with respect to the bece lattice constant ag.., the structure is summarized in 5.2. The
three structures that will be set up are a ferromagnetic one, with all moments aligned
along the z-axis, an antiferromagnetic structure with alternating layers of positively
and negatively aligned moments (similar to the iron antiferromagnets from sections 3.3
and 5.1, but with double the length in z-direction) and an antiferromagnetic structure
with alternating double layers of ferromagnetically aligned moments. Considering that
every atom in the unit cell directly corresponds to a layer in these systems, one can
associate the ferromagnetic system with an ordering of 01534 = (1,1,1,1) [referred to
as FM], the single-layered antiferromagnet with 01534 = (1,1,1,)) [AFM1] and the
double-layered antiferromagnet with 01934 = (1,1,1,}) [AFM2]. The structures will

be referred to by this notation in the following.
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This makes the calculation of the coupling parameters from the energy rather sim-
ple. In general an atom in a bcc lattice has 8 nearest neighbours, which can be found
in the next layers up and down the z-axis, and 6 next-nearest neighbours, one in
each direction of the encompassing simple cubic structure. For the FM structure, all
atoms are equivalent, their moments align with the z-axis and they therefore have

8/6 spin-up neighbours. This means the sums over all neighbours reduce to:

Ecell,bchM = EO - 32J152 - 24JQS2

It does not become much more complicated for the antiferromagnets. For AFM1
each atom has 8 antiferromagnetically aligned nearest and 6 ferromagnetically aligned
next-nearest neighbours. In AFM2 each atom has an equal amount of 4 parallel and
antiparallel neighbours with 4 parallel and 2 antiparallel next-nearest neighbours.

The resulting formulae are shown below.

Bt pecarsn = Eo + 32157 — 245,52
B pecarara = Eo — 8252

The calculation parameters are the same for all three cases: Ry = 2.2, ks = 4.0,
Gmaz = Gmaz,xc = 12.0, Lyaz = 8, lnaznonsph. = 6, s = 1.15 and a k-point set of 16x16x8
k-points (reduced from the previous section to account for the doubled size in the z-
direction). The ferromagnetic calculation was started with an initial moment of 2.2z
and the antiferromagnets with £1.5up. Figure 5.7 shows the results for the coupling
constants as calculated from the formulae above for different lattice constants and
therefore nearest neighbour distances. Only configurations that converged into an
(anti-)ferromagnetic ground state were considered, while those that demagnetized

were sorted out.
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Figure 5.7.: First and second order Heisenberg coupling parameters for bee iron struc-
tures depending on the nearest-neighbour distance.

The plot shows the heavy impact of the source-free modification on the coupling
constants and therefore on the ordering behaviour of the iron structure. While in
the unmodified case J; > 0 and (mostly) Jo < 0, in principle allowing both ferro-
and antiferromagnetism for appropriately large distances, the source-free case has
only positive couplings, prohibiting the formation of antiferromagnets in a system
governed by only the Heisenberg interaction and strongly suppressing it for ab initio
DFT calculations. This is reflected in the increased minimum distance between the
atoms that allows antiferromagnetic order and in the reduced magnetic moments. To
exclude the possibility that this is an effect related specifically to the bee structure of
the magnet, the same calculations were done for an fcc structure with an increased
lattice constant like in the previous section. The structural considerations are very
much the same as for the bee layers, setting up two fcc cells on top of each other
to enable the creation of three distinct magnetic structures. These are again a pure

ferromagnet (FM), a single-layered antiferromagnet (AFM1) and a double-layered
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5.2. Coupling parameters from diflerent magnetic iron structures

antiferromagnet (AFM2). Only this time, due to the increased amount of atoms per
unit cell, pairs of two of them correspond to the same layer and therefore the same

magnetic alignment.
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Each atom now has 12 nearest and still 6 next-nearest neighbours. Of the nearest
neighbours, 4 lie in the same plane as the respective atom, so they are always parallel,
and 4 atoms each lie in the next layer up- and downwards. For the ferromagnet this
of course still yields only positive contributions to the summations in the energy

calculation and gives:

Ecell,fchM = EO - 96J182 - 48J252

For the single-layered antiferromagnet, there are always 4 neighbours with the same
alignment from its own plane and 8 opposite ones from the neighbouring planes. All
next-nearest neighbours share the alignment of the respective atom. This amounts
to:

Evcent feearan = Eo +32J15% - 480552

In the double-layered structure there are 8 parallel and 4 antiparallel neighbours
in contrast, due to one neighbouring layer being aligned in the same direction. The
next-nearest neighbours from the same plane are again parallel, but those 2 planes

across are necessarily antiparallel. This leads to:

Eeent,jecarmz = Eo — 32157 — 161552

The formulae are not much different from the bee case and the calculation of the

couplings is therefore just as easy. The results for the varying lattice constant are
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shown in the figure below:
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Figure 5.8.: First and second order Heisenberg coupling parameters for fcc iron struc-
tures depending on the nearest-neighbour distance.

The impact of the source-free modification is even more pronounced here. The pic-
ture is not as clear cut as in the previous case, but it can be seen that the preference of
ferromagnetic states is only given for big lattice expansions, while antiferromagnetism
becomes possible at a lower distance between the atoms (for comparison: 2.39 A is the
nearest-neighbour distance corresponding to the optimized fcc lattice constant that
formed a non-magnetic state). It is notable, that J is affected much more than J;
between the collinear and source-free case, being several times bigger than the other
couplings and therefore heavily influencing the order that the system will assume.
This is similar to bee iron, where Jy changes sign and grows drastically to favor fer-
romagnetism. Only here this does not happen for the lower lattice constants, where
antiferromagnetism is encouraged instead. The heavily modified couplings quantify
the observation made in previous chapters, that the removal of source terms drasti-

cally alters the coupling behaviour of the iron crystal, regardless of its structure.
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5.3. Discussion

Through the investigation of different ferro- and antiferromagnetic crystals, the pre-
ferred magnetic ordering and coupling behaviour of iron was compared between
collinear and source-free DFT calculations. This gave deeper insight to the find-
ing from chapter 3.3, that the moments of antiferromagnetic iron are reduced more
strongly than those of the ferromagnet and can even lead to a non-magnetic state.
This was verified for a range of lattice constants and therefore distances between the
iron atoms in a bce and fec lattice. This can be used to explain how the source-free
modification improves the magnetic moments. For all materials studied in [2], the
magnetic moment per iron atom was significantly too large in the unmodified calcu-
lations. Additionally, all the materials under study form similar structures (between
the two classes of cmme and fmmm pnictides) and show basically the same antifer-
romagnetic order in the iron atoms. Combining this fact with the observation of
reduced antiferromagnetic moments in the iron calculations in this thesis leads to the
conclusion, that the improvement is a direct consequence of this reduction. This does
not support the statement from the original paper about the presence of unphysical
magnetic monopoles in the pnictide materials that need to be removed, but also does
not explicitly disagree with it. To better test the validity of this assumption, the
divergence of the magnetic fields for converged pnictide calculations would need to be
calculated and compared to simpler materials, where none should be found. It is not
out of the question, that such divergences could be linked to the antiferromagnetic

order with several iron atoms.
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6. Conclusions and Qutlook

In this thesis, the manual removal of magnetic source-fields from the exchange-
correlation magnetic field as proposed in [2] and used in the Elk code was implemented
into the Fleur code and tested with regard to several key properties. Likewise, the
additional scaling of the input magnetization density was applied and an optimal scal-
ing parameter was proposed based on the reproduction of the magnetic moments in
elemental bulk ferromagnets. The scaling that resulted was comparable to that found
in the original publication. From this point, the effect on two classes of pnictides was
studied to draw comparison to the Elk code. The results were similar up to a mar-
gin of error justified by the different parametrization of the LDA functional and the
different scaling. As it was noted that the magnetic moments in the Elk calculations
were not aligned along the same direction experimentalists found for several of the
materials, a separate calculation was carried out for one of the materials to try to
improve the results this way. This was without large success, justifying the source-free
modification and validating its importance. In chapter 5, however, it was highlighted,
that this improvement was explicitly due to the reduction of antiferromagnetic mo-
ments and the impact of the modification on the couplings between magnetic atoms.
The paper required, that the reduction was due to the removal of source terms that
are unphysical and therefore warranted removal. This assumption is not backed by
this thesis. To really prove this point, one would need to do calculations with an
actual CDF'T code, whose fields are source-free by construction. Furthermore, it was
observed that the stability of source-free calculations depends greatly on the accuracy
of the derivatives within the scf loop. Especially PBE-GGA calculations were only
possible for the simple case of bee iron and converged badly even then”.

The validity of the source-free modification could be tested further by investigating
other classes of materials, whose calculations by common non-collinear DFT also yield
bad results for the magnetic structure, but with too low instead of too big magnetic

moments. If an improvement for such a group could be produced, the notion of the

"Though this might be greatly improved to a recent fix, as teased in the previous footnotes.
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necessity to remove the source terms would be much more acceptable. As mentioned
before, a thorough investigation of the magnetic field’s divergence in pnictides as com-
pared to simple materials would also be of interest. Another quantity to investigate
in this context would be the ground-state current density, that is not a variational
quantity in the context of SDFT, but could easily be calculated from the ground-state
wave function. From a computational point of view, the implementation could be im-
proved by smoothing the calculated derivatives and thereby reducing the numerical
noise that complicates convergence. Calculations could also be made a lot faster by
implementing derivative routines and a Poisson equation solver that don’t take the
symmetrized basis into account. As for this thesis, all calculations needed to be done
with neglected symmetry, as the intermediary quantaties needed for the modification

do not adhere to the same ones as the charge and magnetization densities.
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A. The Birch-Murnaghan equation of

state

At several points in this thesis, structural relaxations were done. The curves represent
the dependency of the total energy of the unit cell vs. its volume by scaling up the
lattice constants within a certain range. To find the optimized lattice constant by
energy minimization, the values are fitted against the Birch-Murnaghan equation of

state, that relates the internal energy F to the unit cell volume V':

£y 5 [y [y o]

The resulting fitting parameters are the reference energy Ey, the bulk modulus By,

its pressure derivative B(') and the optimized volume V[ from which the optimized

lattice constant is calculated.
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