001014306 001__ 1014306
001014306 005__ 20231020201855.0
001014306 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03228
001014306 037__ $$aFZJ-2023-03228
001014306 041__ $$aEnglish
001014306 1001_ $$0P:(DE-Juel1)179223$$aNeukirchen, Alexander$$b0$$eCorresponding author
001014306 1112_ $$aDPG-Frühjahrstagung der Sektion Kondensierte Materie$$cDresden$$d2023-03-27 - 2023-03-31$$gDPG SKM$$wGermany
001014306 245__ $$aCalculation Of Phonon Spectra With The FLAPW Method Using Density Functional Perturbation Theory
001014306 260__ $$c2023
001014306 3367_ $$033$$2EndNote$$aConference Paper
001014306 3367_ $$2DataCite$$aOther
001014306 3367_ $$2BibTeX$$aINPROCEEDINGS
001014306 3367_ $$2DRIVER$$aconferenceObject
001014306 3367_ $$2ORCID$$aLECTURE_SPEECH
001014306 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1697794869_12244$$xOther
001014306 520__ $$aComputing phonons applying density functional perturbation theory (DFPT) within all-electron DFT methods is a well-known challenge due to the displacement of muffin-tin spheres and sphere-centered basis functions. In this talk, we present our current results of the phonon dispersion based on our implementation of the DFPT approach in the FLEUR code [1] (www.flapw.de), an implementation of the full-potential linearized augmented plane wave (FLAPW) method. We highlight the good agreement of our preliminary results with phonon dispersions obtained with the finite displacement method for which the FLEUR code has been combined with the phonopy tool (www.phonopy.github.io/phonopy/). We discuss the numerical challenges involved in calculating meV quantites on top of large ground state energies typical for all-electron methods and how we addressed them.
001014306 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001014306 7001_ $$0P:(DE-Juel1)168369$$aGerhorst, Christian-Roman$$b1
001014306 7001_ $$0P:(DE-Juel1)141860$$aMichalicek, Gregor$$b2
001014306 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b3
001014306 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b4
001014306 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5
001014306 8564_ $$uhttps://juser.fz-juelich.de/record/1014306/files/Presentation-1.pdf$$yOpenAccess
001014306 909CO $$ooai:juser.fz-juelich.de:1014306$$pdriver$$pVDB$$popen_access$$popenaire
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179223$$aForschungszentrum Jülich$$b0$$kFZJ
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168369$$aForschungszentrum Jülich$$b1$$kFZJ
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141860$$aForschungszentrum Jülich$$b2$$kFZJ
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b3$$kFZJ
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b4$$kFZJ
001014306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001014306 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001014306 9141_ $$y2023
001014306 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014306 920__ $$lyes
001014306 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001014306 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001014306 980__ $$aconf
001014306 980__ $$aVDB
001014306 980__ $$aUNRESTRICTED
001014306 980__ $$aI:(DE-Juel1)IAS-1-20090406
001014306 980__ $$aI:(DE-Juel1)PGI-1-20110106
001014306 9801_ $$aFullTexts