001014309 001__ 1014309
001014309 005__ 20240313095014.0
001014309 037__ $$aFZJ-2023-03231
001014309 041__ $$aEnglish
001014309 1001_ $$0P:(DE-Juel1)191583$$aVillamar, Jose$$b0$$eCorresponding author
001014309 1112_ $$aNEST Conference$$cVirtual$$d2023-06-15 - 2023-06-16$$wGermany
001014309 245__ $$aAccelerating Neuronal Network Construction through Dynamic GPU Memory Instantiation
001014309 260__ $$c2023
001014309 3367_ $$033$$2EndNote$$aConference Paper
001014309 3367_ $$2DataCite$$aOther
001014309 3367_ $$2BibTeX$$aINPROCEEDINGS
001014309 3367_ $$2DRIVER$$aconferenceObject
001014309 3367_ $$2ORCID$$aLECTURE_SPEECH
001014309 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1695107868_7504$$xAfter Call
001014309 500__ $$aThis project was also funded by the Italian PNRR MUR project PE0000013-FAIR, funded by NextGenerationEU.
001014309 520__ $$aEfficient simulation of large-scale spiking neuronal networks is important for neuroscientific research, and both the simulation speed and the time it takes to instantiate the network in computer memory are key factors. In recent years, hardware acceleration through highly parallel GPUs has become increasingly popular. Similarly, code generation approaches have been utilized to optimize software performance, albeit at the cost of repeated code regeneration and recompilation after modifications to the network model [1].To address the need for greater flexibility in iterative model changes, we propose a new method for creating network connections dynamically and directly in GPU memory. This method uses a set of commonly used high-level connection rules [2], enabling interactive network construction.We validate the simulation performance with both consumer and data center GPUs on a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million synapses [3], and a two-population recurrently connected network designed to allow benchmarking of a variety of connection rules.We implement our proposed method in NEST GPU [4,5] and demonstrate the same or shorter network construction and simulation times compared to other state-of-the-art simulation technologies. Moreover, our approach meets the flexibility demands of explorative network modeling by enabling direct and dynamic changes to the network in GPU memory.[1] Knight, J.C.; Nowotny, T. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model. Frontiers in Neuroscience 2018, 12. https://doi.org/10.3389/fnins.2018.00941.[2] Senk, J.; Kriener, B.; Djurfeldt, M.; Voges, N.; Jiang, H.J.; Schüttler, L.; Gramelsberger, G.; Diesmann, M.; Plesser, H.E.; van Albada, S.J. Connectivity concepts in neuronal network modeling. PLOS Computational Biology 2022, 18, e1010086. https://doi.org/10.1371/journal.pcbi.1010086.[3] Potjans, T.C.; Diesmann, M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex 2014, 24, 785–806. https://doi.org/10.1093/cercor/bhs358.[4] Golosio, B.; Tiddia, G.; De Luca, C.; Pastorelli, E.; Simula, F.; Paolucci, P.S. Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs. Frontiers in Computational Neuroscience 2021, 15. https://doi.org/10.3389/fncom.2021.627620.[5] Tiddia, G.; Golosio, B.; Albers, J.; Senk, J.; Simula, F.; Pronold, J.; Fanti, V.; Pastorelli, E.; Paolucci, P.S.; van Albada, S.J. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Frontiers in Neuroinformatics 2022, 16. https://doi.org/10.3389/fninf.2022.883333.
001014309 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001014309 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001014309 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001014309 536__ $$0G:(DE-Juel-1)ZT-I-PF-3-026$$aMetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)$$cZT-I-PF-3-026$$x3
001014309 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001014309 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x5
001014309 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x6
001014309 7001_ $$0P:(DE-HGF)0$$aGolosio, Bruno$$b1
001014309 7001_ $$0P:(DE-HGF)0$$aTiddia, Gianmarco$$b2
001014309 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b3
001014309 7001_ $$0P:(DE-HGF)0$$aStapmanns, Jonas$$b4
001014309 7001_ $$0P:(DE-HGF)0$$aFanti, Viviana$$b5
001014309 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b6
001014309 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b7
001014309 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b8
001014309 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b9
001014309 909CO $$ooai:juser.fz-juelich.de:1014309$$pec_fundedresources$$pVDB$$popenaire
001014309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191583$$aForschungszentrum Jülich$$b0$$kFZJ
001014309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b6$$kFZJ
001014309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b8$$kFZJ
001014309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b9$$kFZJ
001014309 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001014309 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001014309 9141_ $$y2023
001014309 920__ $$lyes
001014309 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001014309 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001014309 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001014309 980__ $$aconf
001014309 980__ $$aVDB
001014309 980__ $$aI:(DE-Juel1)INM-6-20090406
001014309 980__ $$aI:(DE-Juel1)IAS-6-20130828
001014309 980__ $$aI:(DE-Juel1)INM-10-20170113
001014309 980__ $$aUNRESTRICTED
001014309 981__ $$aI:(DE-Juel1)IAS-6-20130828