001     1014311
005     20240313103117.0
024 7 _ |a 10.3390/app13179598
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03233
|2 datacite_doi
024 7 _ |a WOS:001062652800001
|2 WOS
037 _ _ |a FZJ-2023-03233
082 _ _ |a 600
100 1 _ |a Golosio, Bruno
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1695125333_12976
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This project was also funded by the Italian PNRR MUR project PE0000013-FAIR, funded by NextGenerationEU.
520 _ _ |a Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies while still meeting the flexibility demands of explorative network modeling.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 2
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 3
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 4
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 5
536 _ _ |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)
|0 G:(EU-Grant)800858
|c 800858
|f H2020-SGA-INFRA-FETFLAG-HBP
|x 6
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 7
700 1 _ |a Villamar, Jose
|0 P:(DE-Juel1)191583
|b 1
700 1 _ |a Tiddia, Gianmarco
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Pastorelli, Elena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stapmanns, Jonas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fanti, Viviana
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paolucci, Pier Stanislao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 7
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 8
773 _ _ |a 10.3390/app13179598
|0 PERI:(DE-600)2704225-X
|n 17
|p 9598, 29 pages
|t Applied Sciences
|v 13
|y 2023
|x 2076-3417
856 4 _ |u https://juser.fz-juelich.de/record/1014311/files/restricted%20fulltext.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014311
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Department of Physics, University of Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191583
910 1 _ |a Department of Physics, University of Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma, Italy
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52 428 Jülich, Germany
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, University of Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato, Italy
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma, Italy
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:55:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:55:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:55:23Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21