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Abstract

Thinning is a sub-sampling technique to reduce the memory footprint of Markov chain

Monte Carlo. Despite being commonly used, thinning is rarely considered efficient. For sam-

pling constraint-based models, a highly relevant use-case in systems biology, we here dem-

onstrate that thinning boosts computational and, thereby, sampling efficiencies of the widely

used Coordinate Hit-and-Run with Rounding (CHRR) algorithm. By benchmarking CHRR

with thinning with simplices and genome-scale metabolic networks of up to thousands of

dimensions, we find a substantial increase in computational efficiency compared to

unthinned CHRR, in our examples by orders of magnitude, as measured by the effective

sample size per time (ESS/t), with performance gains growing with polytope (effective net-

work) dimension. Using a set of benchmark models we derive a ready-to-apply guideline for

tuning thinning to efficient and effective use of compute resources without requiring addi-

tional coding effort. Our guideline is validated using three (out-of-sample) large-scale net-

works and we show that it allows sampling convex polytopes uniformly to convergence in a

fraction of time, thereby unlocking the rigorous investigation of hitherto intractable models.

The derivation of our guideline is explained in detail, allowing future researchers to update it

as needed as new model classes and more training data becomes available. CHRR with

deliberate utilization of thinning thereby paves the way to keep pace with progressing model

sizes derived with the constraint-based reconstruction and analysis (COBRA) tool set. Sam-

pling and evaluation pipelines are available at https://jugit.fz-juelich.de/IBG-1/ModSim/

fluxomics/chrrt.

Author summary

Analyzing the parameter spaces of genome-scale metabolic models (GEM) by means of

Markov chain Monte Carlo (MCMC) sampling has become a key method in systems biol-

ogy. In this context, sub-sampling, or thinning, reduces storage requirements and post-

processing efforts of the immense sample volumes. However, sub-sampling is typically

applied without due consideration, despite statisticians arguing that, by increasing the
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variance of the resulting estimate, thinning is almost always statistically inefficient. Con-

sidering synthetic and real sampling problems of widely varying complexity, we show that

for the state-of-the-art uniform MCMC sampling algorithm, Coordinate Hit-and-Run

with Rounding (CHRR), thinning has dramatic consequences on sampling performances:

Our benchmarks reveal that sub-sampling boosts CHRR efficiencies, often by orders of

magnitude, and the performance gain scales with problem dimension. For the studied

problem classes, we provide simple rules of thumb for performance-optimized thinning,

for which we give out-of-sample evidence. Utilization of our thinning guideline for

GEMs, hence, keeps promise to solve hitherto inaccessible sampling problems, while for

large scale networks its application can make the difference between immediate sampling

success and repeated failures. In summary, on the one hand, optimized tuning of CHRR is

now easily possible. On the other hand, thinning choice has to be registered when bench-

marking CHRR implementations with regard to their running times.

1 Introduction

Constraint-based modelling of metabolism provides a versatile mathematical framework for

integrating genomic and biochemical knowledge with multi-omics data and to interrogate net-

work models [1–3]. As such, the constraint-based reconstruction and analysis (COBRA) meth-

odology has established an indispensable tool set with numerous applications in metabolic

engineering, biotechnology, microbiology, and systems as well as synthetic biology [4–7].

Nowadays, genome-scale models (GEMs) are routinely reconstructed from genomic data

using automatized workflows [8]. Powerful reconstruction pipelines such as CaveMe [9],

AGORA2 [10], or metaGEM [11] generate high-quality models with increasing sizes and at

accelerated speed [12]. For instance, recently these tools enabled to generate more than 7,300

context-specific yeast GEMs [10]. Multi-organismal GEM repositories are publicly available,

such as the BiGG database [13, 14] that contains 108 models, with the largest metabolic model,

Recon3D [15], accounting for more than ten thousand reactions. Nowadays, modeling initia-

tives are starting to target the description of microbial communities, pan- and meta-genomes,

and even the whole human body [16–18], therewith escalating model sizes further.

GEMs are particularly useful to predict phenotypes, to suggest genetic interventions, e.g.,

by applying bi-level strain design approaches [19], and to foresee the outcome of experiments

[20]. Besides comprehensiveness, the capabilities of GEMs to deliver useful insights is inti-

mately tied to the knowledge of the unknown model parameters, i.e., the intra- and extracellu-

lar metabolic reaction rates (fluxes). Here, in particular, enzyme constraints have been shown

to effectively improve the models’ prediction performances [21]. The stoichiometry-induced

mass balances at steady-state and further constraints introduce linear dependencies among the

fluxes, implying that all feasible flux configurations are located within a convex hyper-polytope

[22, 23], with a dimension dictated by the nullspace of the stoichiometric matrix. Interestingly,

such convex polytopes as solution spaces arise in many applied modeling contexts, including

operations research [24], ecological modeling [25], computational finance [26], astronomy

[27], physics [28], and everywhere where network-flow problems are to be solved.

The expansion in GEM sizes has raised the need for developing scalable tools to analyze the

high-dimensional flux solution spaces. In this context, uniform convex polytope sampling

(UCPS), i.e., drawing representative random numbers from a truncated uniform distribution

defined over the bounded flux polytope, is routinely used for characterizing the solution spaces

of metabolic [29, 30] and gene networks [31], identification of metabolic flux couplings [32],
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design of experiments [20, 33], and assessing the effects of uncertainties in biochemical net-

work formulations [34, 35]. A simple UCPS strategy is rejection sampling, a Monte Carlo tech-

nique that iteratively generates samples within easily accessible objects such as polytope-

enclosing (hyper)cubes, where it keeps only those draws that are located interior to the poly-

tope, until the truncated uniform target distribution is approximately covered [36]. While ini-

tial efforts in the field of constraint-based modeling used this technique [37], rejection

sampling was quickly recognized to be computationally infeasible for more comprehensive

network models, because for every feasible sample the number of rejections grows super-expo-

nentially with polytope (effective model) dimension.

The class of Hit-and-Run (HR) algorithms has been developed to overcome this bottleneck

[38]. HR is a Markov chain Monte Carlo (MCMC) technique, which, starting from an initial

flux configuration within the polytope, generates a sequence of flux states (a Markov chain) by

drawing randomly from inner chords directed in random directions [39]. As a result, the gen-

erated states (or a fraction of them) are called MCMC samples. These samples, albeit being cor-

related by construction, approximate the target distribution asymptotically [40].

How quickly the target distribution is approximated well in terms of wall-clock time, the

so-called sampling efficiency, is critical for practical applicability of HR. Sampling efficiency is

determined by two components: (1) the statistical efficiency, which specifies how well a set of

samples represents a target distribution, and (2) the computational efficiency of the HR sam-

pling algorithm, i.e., how many computational operations are required per generated state.

Formally, the statistical efficiency of N samples produced by a Markov chain is given by the

effective sample size (ESS) [36]:

ESS ¼
N

1þ 2 �
P1

t¼1
rt

ð1Þ

with ρt being the autocorrelation of the sequence at lag t. The sampling efficiency of the MCMC

implementation is then measured by the ESS normalized to wall clock time t, i.e., ESS/t.
According to Eq (1), two strategies to raise MCMC sampling efficiencies are (1) reducing

the computational cost per sample, and (2) decreasing the autocorrelation between subsequent

states. For HR, the cost per sample is reduced by updating the states in a pure coordinate-wise

fashion instead of drawing random directions, a technique also known as Gibbs sampling [41].

To decrease the autocorrelation, the average distance between subsequent states is to be

increased. In UCPS, the achievable distance is limited by the geometry of the polytope. Intui-

tively, in isotropic geometries on average longer steps are possible than in anisotropic spaces.

Since heterogeneous parameter scales in GEMs are the rule, an affine transformation is

employed to homogenize the flux scales prior to sampling, the so-called rounding transforma-
tion [22]. After sampling, the states have to be mapped back to the original space by inverting

the rounding transformation. Together, the two strategies culminated in the celebrated Coor-

dinate Hit-and-Run with Rounding (CHRR) algorithm [42], the tried-and-tested workhorse

for UCPS in the COBRA domain [4, 43, 44], with several implementations being available

[42, 45–47].

CHRR is commonly applied together with thinning, a MCMC post-processing technique,

to reduce the memory footprint of the sampling results. The simplest and most widely used

form of thinning is fixed frequency thinning with thinning constant τ, which means that only

every τth sample is kept. While thinning indeed reduces the autocorrelation of the samples gen-

erated by CHRR, the reduction comes at the cost of producing an approximation of the target

distribution that is less accurate. Indeed, thinning is known to be statistically inefficient in all

but very few cases [48, 49].
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Recognizing the “need for speed” to sample large-scale GEMs, in this work, we study the

impact of thinning for CHRR systematically from the perspective of practical sampling effi-

ciency, based on principled statistical criteria (cf. Fig 1). By analyzing simplices and GEMs

with widely varying dimensionality, we demonstrate that CHRR is one of the rare cases for

which thinning boosts sampling efficiencies, measured in terms of ESS/t, and prove current

thinning practices computationally wasteful. From our benchmarks, we derive simple, yet

effective and statistically rigorous guidelines to effectively and efficiently tune CHRR, which

we verify using large-scale GEMs such as Recon3D. Our findings thus guide practical sampling

efforts of COBRA models towards achieving more effective samples with less compute

resources, thereby updating previous wisdom [42].

2 Methods and models

We start with a brief background on UCPS, describe the pre- and post-processing of flux poly-

topes relevant for the CHRR sampling procedure, list test and validation problems, and give

details about MCMC diagnostic checks along with implementation details.

2.1 Convex GEM flux polytopes and their pre- and post-processing

GEMs are stoichiometric network models that are compiled from genomic information and

biochemical knowledge [50]. By mass balancing at steady-state, linear inequality systems are

derived from these models for the D unknown metabolic reaction rates (fluxes) n 2 RD:

A0eq � n ¼ b0eq ð2Þ

Fig 1. Overview of the CHRR tuning workflow. CHRR takes in a flux polytope that is sampled after bringing the polytope in a more favorable shape

(rounding). By thinning, samples (grey) are deliberately dropped before transforming the remaining samples back to the original space (de-rounding).

Finally, the samples (red) represent the uniform samples of the given GEM. Thinning is performance critical for CHRR, because de-rounding implies

costs per-sample. Between the extremes of discarding too many samples and spending too much compute resources for de-rounding highly-correlated

samples, an optimal thinning constant τopt exists. By running benchmarks for different GEMs and thinning constants, we derive a guideline for

choosing ~t, close enough to τopt in efficiency, to sample unseen GEMs quickly.

https://doi.org/10.1371/journal.pcbi.1011378.g001

PLOS COMPUTATIONAL BIOLOGY Boosting CHRR sampling efficiencies by optimized thinning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011378 August 11, 2023 4 / 18

https://doi.org/10.1371/journal.pcbi.1011378.g001
https://doi.org/10.1371/journal.pcbi.1011378


where A0eq 2 R
n0eq�D is the (extended) stoichiometric matrix, and b0eq 2 R

n0eq contains the time

derivatives of the (intra- and extracellular) metabolite concentrations. As a convention, we use

the symbol “�” for the matrix-vector product. In addition, the fluxes ν are subject to linear

inequalities originating from physiologically motivated lower and upper limits on their values:

A0in � n < b0in ð3Þ

with A0in 2 R
n0in�D the constraint matrix and b0in 2 R

n0in contains the flux bounds. The convex

polytope (Eqs 2 and 3) is constructed such that it is always bounded in all flux directions, oth-

erwise the uniform sampling problem is ill-defined. Since A0in typically contains redundant

constraints that cause numerical instabilities in the sampling workflow, in a first pre-process-

ing step, the redundant inequalities are eliminated from Eq (3), giving

Ain � n < bin ð4Þ

with Ain 2 R
nin�D the constraint matrix and bin 2 R

nin Then, inequalities that are effectively

equalities (fluxes bound to ranges equal or smaller than 1e-7) are identified and reformulated

as equalities, which creates the modified stoichiometric system

Aeq � n ¼ beq ð5Þ

with Aeq 2 R
neq�D and beq 2 R

neq . Together, Eqs 4 and 5 define the D-dimensional effective

convex-bounded flux polytope of the given GEM:

PD ¼ fn 2 R
D
j Aeq � n ¼ beq ^ Ain � n < bing ð6Þ

We note that by the pre-processing PD is slightly smaller than its original counterpart defined

by Eqs (2) and (3). However, because the threshold, below which inequalities are interpreted

as equalities, is selected to be orders of magnitude smaller than the achievable flux precision,

the impact of the shrinkage on the flux values is in fact marginal. Instead, the beneficial effect

on the numerical stability of the sampling algorithm outweighs the risk of losing relevant flux

information [44].

Next, the equalities (5) are exploited to reduce the dimension of the sampling problem,

without changing the polytope volume, by expressing the polytope PD in terms of indepen-

dent, still interpretable flux coordinates nindep 2 Rd
; d � D [51]. Therefore, we determine a

basis K 2 RD�d
of the null space of the modified stoichiometric system (5), subject to the

inequality constraints (4):

Ain � ðK � nindep þ n0Þ < bin ð7Þ

where ν0 is a particular solution within the flux polytope PD. A typical choice for ν0 is the Che-

byshev center of PD. By going from Eqs (4) and (5) to Eq (7), all equalities are eliminated from

PD in Eq (6), resulting in the dimension-reduced flux polytope Pd:

Pd ¼ fn
indep 2 Rdj A � nindep < bg ð8Þ

where A ¼ Ain � K 2 R
nin�d and b ¼ bin � Ain � n0 2 R

nin with ν0 and nin> d in all but toy net-

works. Hitherto, we call d the effective model dimension. As an example, Recon3D, as down-

loaded from BiGG, has 10, 600 bounded reactions. After dimension-reduction and flux

coordinate transformation, nin = 11, 195 inequality constraints and d = 4, 861 effective dimen-

sions remain.

Flux polytopes are known to have anisotropic shapes, a characteristic that slows down the

mixing of MCMC sampling schemes (see [22] for details). To curb for this, dimension-
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preserving so-called rounding transformations have been proposed that transform the poly-

tope Pd into a flux polytope Pround
d having a more isotropic shape [22]. For more technical dis-

cussions of the isotropy of convex polytopes, we refer to [39, 52, 53]. In this work, using the

approach in [44], we determine the linear rounding transformation R 2 Rd�d
by computing

the Maximum Volume Ellipsoid (MVE) inscribed in Pd [54]. Specifically, the inverse mapping

R−1 is determined such that it maps the MVE to the unit sphere. The rounded polytope Pround
d

is then given by:

Pround
d ¼ fnround 2 Rd

j AR � n
round < bg ð9Þ

with AR ¼ A � R� 1 2 Rnin�d. Finally, any d-dimensional independent flux vector νround in the

rounded space has to be mapped back to a flux vector ν in the original D-dimensional flux

space to be biologically interpretable, using the affine back-transformation T : νround 7! ν given

by:

n ¼ K � R� 1 � nround þ n0 ð10Þ

2.2 Coordinate Hit-and Run with Thinning

Thinning is an integral part of many MCMC algorithms. We hitherto denote our implementa-

tion of CHRR [42] that makes deliberate use of thinning by CHRRT. Algorithm 1 gives a pseu-

docode description of the CHRRT algorithm. With a UCPS task at hand, defined by Eqs (4)

and (5), first the rounded polytope Pround
d is determined (L 1). Starting from an initial flux state,

samples in Pround
d are iteratively generated by constructing chords along the coordinates (L

6–10). Fixed frequency thinning is applied with thinning constant τ (L 11). Lastly, every sample

that is not discarded due to thinning is transformed back to the full dimensional flux space PD

(L 12).

Algorithm 1 Coordinate Hit-and-Run with Rounding and Thinning (CHRRT)
Input:
Equality constraints: Aeq � ν = beq
Inequality constraints: Ain � ν � bin
Number of samples to store: N
Thinning constant: τ
Feasible starting state: n0 2 PD

Result:
N uniformly distributed flux samples n1; :::; nN 2 PD

Procedure:
1: determine dimension-reduced polytope Pd

2: compute rounding transformation R and determine rounded polytope
Pround

d

3: transform starting state: nround
0

 T� 1ðn0Þ

4: i  0 ⊳ Label iteration of CHRRT with i
5: while number of stored samples < N do
6: k  uniform random coordinate 2 {1, . . ., d}
7: ⊳ compute distances from nroundi to borders of Pround

d :
8: d+, d−  distances from nroundi to @Pround

d along kth coordinate
9: l � Uðd� ;dþÞ ⊳ Sample step size λ uniformly from

interval
10: nroundiþ1

 nroundi þ l � ek ⊳ Update in direction of unit vector ek
11: if i modulo τ is 0 then
12: store result of Tðnroundiþ1

Þ ⊳ Back-transform sample to original
flux space PD

13: end if
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14: i  i + 1
15: end while

Concerning the computational costs of CHRRT, determining an internal point ν0 and com-

puting the rounded polytope Pround
d are one-time costs, both being independent of the numbers

of samples. We therefore do not further consider these costs in this work. The most expensive

operation per sample is the back-transformation T that maps the generated sample to the orig-

inal polytope (Algorithm 1, L 12). The back-transformation amounts to a dense matrix-vector

multiplication, with worst case costs of Oðnin � dÞ per sample. All other operations are ele-

ment-wise additions, multiplications, or divisions with per-sample costs of OðdÞ.

2.3 Test problems

We consider two types of test problems, simplices representing well-defined and easy to scale

problems, and GEMs being our main concern. A d-dimensional simplex Sd is defined by:

Sd ¼ fx 2 R
d j
Xd

i¼1

xi � 1; xi � 0 8i � dg ð11Þ

Being easily scalable to different dimensions, simplices are ideal to study the dependency of

sampling complexity and polytope dimension. Different to GEMs, simplices are constructed

by non-redundant constraints and, therefore, do not need to be dimension-reduced. However,

as for GEMs, polytope rounding improves the geometric isotropy of simplices. Thus, Eq (10)

remains valid, with the matrix K set to identity. In this work, simplices in 64, 256, 1,024, and

2,048 dimensions were benchmarked.

Besides simplices, we selected eleven GEMs of varying sizes for this study, eight for training

our thinning guideline, and three (Yeast8, ecYeast8, Recon3D) for validation purposes. Effec-

tive polytope dimensions range from 24 to 4,861. In contrast to simplices, for GEMs there is

no consistent relationship between the number of reactions, the number of constraints, and

the effective polytope dimension d. We refer to Table A in S1 Appendix for more details on

the test problems.

2.4 MCMC convergence diagnostics

Assessing whether a (sub)sequence of MCMC samples has converged to the target distribution

is not only vitally important in practical inference, but also critical for reliable benchmarking

sampling performances. The ESS and rank-normalized R̂ values are computed for each of the

D fluxes separately and set to the minimum/maximum value of these, i.e., considering the

worst-case. We compute the ESS in the original flux space, because this is the space, for which

we are interested in statistics about estimates, such as the mean flux. Particular care must be

taken here, since the estimated ESS is typically noisy and may therefore be unreliable for sam-

ple sets that are far from being converged. We here follow the advice given by [55] to use four

independent chains and compute the rank-normalized R̂ diagnostic along with the ESS to test

for convergence. Vehtari et al. [55] argue that the estimation of R̂ and ESS requires reliable

estimates of the variances and autocorrelations of the samples, that is, the estimation of R̂ and

ESS is only reliable, if the ESS of a set of samples is sufficiently large. Therefore, in our study,

the threshold for convergence is set to R̂ < 1:01 and ESS> 400, which is suitable to a setup

with four independent Markov chains. The limit of 400 for the ESS is derived by considering

that for a single chain, each of the parts of the split chain (50/50 split) is required to contain

ESS> 50, which amounts to a total of at least 400 when considering multiple, independent
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chains [55]. Exemplary ESS and rank normalized R̂ values are shown in Figs B and C in S1

Appendix.

2.5 Implementation details

GEMs were downloaded (Table A in S1 Appendix for details) in SBML (Systems Biology

Markup Language) format [56], and plugged into PolyRound v0.1.8, the state-of-the-art

python package for polytope rounding [44]. The highly optimized polytope sampling library

HOPS v3.0.0 was used for MCMC sampling [46]. CHRRT, as implemented in HOPS, was

used for all benchmark runs to ensure their comparability. In each sampling run, four parallel

chains were used according to recommendations by Vehtari et al. [55]. Samples, the rounded

polytopes, and the accompanying transformations were stored. For each flux, trace plots were

visually examined, the maximum rank-normalized R̂ metric, and the minimal ESS over all

fluxes were computed to check that MCMC convergence criteria are met as described in Sec.

2.4. Calculations are performed using arviz v0.12.1 [57]. All numerical experiments were run

on an AMD Ryzen 9 5950X 16-Core Processor.

3 Results and discussion

After motivating the idea of using thinning in CHRR to reallocate computational resources,

we quantify achievable sampling efficiencies for the test problems. From that, we derive simple

and useful guidelines for optimized thinning choice, which we compare to previous advice

using three validation problems.

3.1 The role of thinning for CHRR

In constraint-based metabolic modeling, some studies using CHRR report thinning constants

of 100, 1000, and 10,000 [4, 43]. However, these works neither do provide guidance for a suit-

able selection of τ for a sampling problem at hand, nor do they discuss the implications of the

different choices of τ. On the other hand, Haraldsdóttir et al [42] pointed out that τ should be

selected depending on the problem dimension. Specifically, the authors suggest setting τ, as a

rule of thumb, to eight times the squared polytope dimension, stating that this choice ensures

statistical independence of the thinned samples. However, in this work no derivation or their

rule or further underpinning of their argument is given.

Spurred by the seminal theoretic work of Geyer [48], we set out to investigate whether the

sampling efficiency of CHRR benefits from thinning. The question is whether, for a fixed

computational budget, CHRR with τ> 1 convergences faster than unthinned CHRR with

τ = 1. To this end, we consider the ESS of a set of N samples in relation to the time cost of pro-

ducing the samples, tN,τ. The time cost tN,τ is given by the sum of the time costs tupdate for pro-

ducing N � τ states nroundi in Algorithm 1 (L 6–10), and the time cost ttransform of transforming

the N samples back to the original flux space (Algorithm 1, L 12):

tN;t ¼ N � ðt � tupdate þ ttransformÞ ð12Þ

Geyer argued that for thinning to be beneficial, the time cost tN,τ has to grow slower with τ
than the ESS, indicating that thinning is not advantageous for every combination of sampling

problem and MCMC algorithm [48]. In this vein, Link et al. criticize the routine application of

thinning for applications in ecology, where thinning is often detrimental to sampling efficiency

[49].

To investigate the role of thinning for UCPS using our CHRRT implementation, we mea-

sured tupdate and ttransform for a set of synthetic and real test problems (Table A in S1
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Appendix). For both time costs, we took the wall-clock times and averaged them over the

number of times each operation was applied. The resulting time ratios ttransform/tupdate are

shown in Fig 2. Among all test problems, the time ratios for only the two models with the few-

est dimensions, i.e., the 64-dimensional simplex and the 24 dimensional E. coli core model, are

below ten. For the remaining investigated models, ttransform is up to three orders of magnitude

larger than tupdate. Precisely, for the simplices, the time ratio increases quadratically with

dimension. We also observed a stark increase in the ratio for GEMs. Different to simplices,

however, with GEMs additional factors contribute to the time ratios, such as the number of

fluxes D (more fluxes increase ttransform) and the number of constraints nin (more constraints

increase tupdate), resulting in a less succinct relation between effective model dimensions and

time ratios.

Across all test problems, ttransform is generally considerably larger than tupdate, with a time

ratio of at least four for the smallest tested models, but which starkly increases with the dimen-

sion of the sampling problem. Given such large time ratios, it is plausible to expect thinning to

be beneficial for the sampling efficiency of CHRR in the context of UCPS. However, only by

considering the relation between the time ratios and the autocorrelation mediated by the ESS,

which is specific to the combination of model characteristic and CHRR, we are able to find out

if thinning actually is practically beneficial. In conclusion, low autocorrelation should not be

the only deciding factor when suggesting rules of thumb for thinning constants.

3.2 Benchmarking CHRR from the perspective of thinning

To study how the performance of CHRR depends on thinning for the two classes of test prob-

lems, we benchmarked the sampling efficiency, in terms of ESS/t, for a wide variety of thinning

constants. To find thinning constants that yield high ESS/t values, pre-runs with τ = d were

performed for each test problem. From the pre-runs, we estimated appropriate ranges of prob-

lem-specific thinning constants and selected a set of at least five τ’s distributed over that range.

Fig 2. Mean time ratios of one back-transform ttransform vs. one CHRRT update tupdate for simplices and GEMs (horizontal axis scaled

logarithmically). Ratios indicate that in all cases, the cost to transform a sample back to the original flux space exceeds the cost of generating a sample

by far. In all but the smallest test problems, the error bars of four runs are too small (< 1%) to be visible. For the simplices the ratio increases

quadratically with dimension (0.00024 � d2 + 0.044 � d + 1.4). For GEMs, there is a strong trend towards an increase in ratio with model dimension.

Details on the models are found in Table A in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011378.g002
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For simplices and GEMs, Fig 3 shows the obtained ESS/t, relative to the unthinned CHRR

baseline. The plots fan out in a series of curves for the test problems with different model

dimensions. As a rule, for higher dimensions, higher relative ESS/t values are achieved. All

curves share the characteristic that with increasing τ, the relative ESS/t first increases before

dropping again. The peak indicates the optimal thinning constant choice, specific to the inves-

tigated test problem. While for simplices pronounced peaks emerge, the curves for GEMs

show plateaus, indicating that a range of thinning constants perform equally well. This appar-

ent insensitivity in ESS/t performance for GEMs is convenient, since it implies that hyperpara-

meter tuning of τ does not need to be precise for achieving near optimal ESS/t values, if its

value is set to a suitable order of magnitude. Clearly, thinning constants at the lower end of the

plateau are to be preferred due to a better resource usage (see below).

To study how the optimal (in terms of sampling efficiency) thinning constant relates to the

problem dimension, we then quantified the speed-up of CHRRT for the apparently best thin-

ning constant, hitherto denoted t̂, among the set of tested constants. Results are shown in Fig

4A. For simplices, relative speed-ups grow roughly to the square of the polytope dimension.

The relative speed-ups achieved for GEMs also grow with effective model dimension, with val-

ues ranging from 6 for the E. coli core model up to 770 for Recon1. For the latter, CHHRT with

t̂ required only 0.32 s to converge and reach an ESS of 4,954, the unthinned variant required

almost 80 times longer (25 s) to converge, while it reached an ESS of only 507. Notably, the

speed-ups observed for GEMs surpass those observed for simplices of similar dimensions.

Hence, our benchmarks show that the beneficial effect of thinning, when appropriately tuned,

is not only plausible in theory, but it is also of high practical relevance for solving high-dimen-

sional UCPS problems.

Since thinning drastically affects performances, our findings imply that the consequences of

selecting τ values need to be taken into consideration when benchmarking novel aspiring

Fig 3. Double logarithmic plot of sampling efficiencies, relative to the unthinned sampling efficiencies, for selected thinning constants τ. The

corresponding absolute ESS/t values are provided in Fig A in S1 Appendix. (A) Benchmark results for simplices. The peak efficiency is reached for a

thinning constant t̂ ¼ 2 � d, with d being the number of effective dimensions. Over all, the maximum speed-up is achieved for the 2,064-dimensional

simplex, being 1,798 times faster in terms of ESS/t compared to unthinned CHRR. (B) Benchmark results for GEMs. Setting τ> 1 generally improves

the ESS/t. For increasing d, larger thinning constants further boost the sampling efficiency. In all cases, the emerging plateaus indicate that the optimal

ESS/t is not overly sensitive to the precise choice of the thinning constant.

https://doi.org/10.1371/journal.pcbi.1011378.g003
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UCPS algorithms against CHRR, as for example the truncated log-concave sampling with

reflective Hamiltonian Monte Carlo [53] or the Riemannian Hamiltonian Monte Carlo in a

Constrained Space [58].

3.3 Simple thinning guidelines for simplices and GEMs

We use the previously benchmarked GEMs and simplices as training data for deriving practi-

cal guidelines on how to configure thinning for CHRR for optimized performance. For d-

dimensional simplices, the linear relation

t̂simplex ¼ 2 � d ð13Þ

explains the measured data perfectly. For GEMs, on the other hand, a quadratic relation of the

form 0.164 � d2 matches the data well. Considering Fig 3B, indicating that optimal sampling

performance is not overly sensitive to thinning constant choice, as a memorable rule of thumb

for efficient GEM sampling, we propose:

t̂GEM ¼
d2

6
ð14Þ

which only marginally deviates (less than 1.5%) from the fitted line.

Compared to the advice previously given by Haraldsdóttir et al. [42], i.e., 8 � d2, our GEM

guideline advocates thinning constants that are a factor of 48 smaller. To put the difference

between the former and our updated guideline into perspective, a 48-fold increase in τ means

a 48-fold increase in CHRR update steps, of which the vast majority is discarded. As we have

argued before, discarding samples can lead to an improvement of sampling efficiency, but only

if the loss of information due to dropping samples is over-compensated by information from

additional CHRR update steps. In addition, in Fig 3 we show that selecting the thinning con-

stant too large risks missing the performance peak, which then wastes computational

Fig 4. Performances of best thinning constants. (A) Speed-ups achieved for the best thinning constants t̂, compared to the unthinned baseline, for

simplices (orange squares) and GEMs (blue cicles). (B) Scaling of the best thinning constant given the effective model dimensions d (vertical axis scaled

logarithmically). Guidance for the selection of useful thinning constants t̂ for GEMs (blue line) and simplices (orange line) is obtained by regression.

For problem dimensions above 500, t̂ is about two orders of magnitude larger for GEMs than for simplices.

https://doi.org/10.1371/journal.pcbi.1011378.g004
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resources. In particular, we observe that a 48-fold increase in τ would lead to lower sampling

efficiencies for eight out of the twelve test problems, because the performance peak would be

clearly missed. For the remaining four test-problems, i.e., GEMs of higher dimensionality, we

did not attempt to characterize the plateau around the best thinning constants, since this

would be of little practical relevance. It is generally preferable to set the thinning constant to

the minimal value on the plateau, because then less work is discarded, and more samples are

stored than for larger thinning constants, while achieving the same ESS/t. Nonetheless, it is

imaginable that the performance plateaus for the four largest GEMs stretch across an even

wider range of thinning constants, meaning that the difference in ESS/t resulting from the pre-

vious rule of Haraldsdóttir et al. [42] and our guideline may turn out to be smaller.

While more work could be invested into fine-tuning t̂ for the problem at hand, this risks

investing more computational work than is eventually gained, because the estimation of ESS is

noisy for short CHRR runs. In summary, we showed that a previous guideline for GEM sam-

pling is suboptimal from the perspective of sampling efficiency. Instead, we promote a new

GEM guideline, given by Eq (14), which empirically maximizes sampling performance without

unnecessarily discarding computational work (green computing).

3.4 Result verification

To verify our proposed guideline for GEM sampling using CHRR, we applied it to three large,

out-of-sample GEMs: Yeast8 (1,108 dimensions), ecYeast8 (3,4109 dimensions), as well as

Recon3D (4,861 dimensions), the largest GEM currently available in the BiGG database [13].

All validation models were larger than the largest training model (Recon1), cf. Table A in S1

Appendix).

Given the large validation models, it is computationally infeasible to benchmark inefficient

thinning constants (especially unthinned CHRR). Therefore, we need alternative ways to test,

whether our guideline leads to optimized sampling. For the yeast models, Yeast8 and ecYeast8,

we benchmarked our guideline t ¼ d2

6
, a smaller thinning constant t ¼ d2

36
, and a larger thin-

ning constant d2. This experimental setup allowed us to test, whether our guideline actually

finds the (potentially wide) peak ESS/t. After checking for convergence, we measured the

ESS/t, see Fig 5.

For Yeast8, setting τ according to our guideline clearly produced the best performance. For

ecYeast8 a six times smaller thinning constant was slightly more efficient (around 4%). How-

ever, choosing a six times larger thinning constant than our guideline decreased performance

substantially. Because the ESS/t as a function of τ is not multimodal, we can conclude, that the

48 times larger τ, suggested previously [42], performs worse. The estimated time ratios for

Yeast8 (957) and ecYeast8 (2090) let us conclude that very small thinning constants, such as

τ = 1, are inefficient, because too much time would be spent on the back-transform. From

these two test-cases, it is clear, that thinning should not be too small nor too large and that our

guideline leads to practical performance.

For testing our guideline with the largest validation model, Recon3D, we needed to mini-

mize the computational work even further, to achieve results in a reasonable time. We selected

two thinning constants to test, namely our guideline, see Eq (14), and previous advice

(τ = 8 � d2) [42]. By benchmarking these two thinning constants, we test, whether our guideline

leads to an improvement over existing advice.

For the previous advice (τ = 8 � d2 = 8 � 4, 8612 = 189, 034, 568), we observed that CHRRT

requires 1.1 h to produce and store one sample per chain. Because it is computationally infeasible

to run τ = 8 � 4, 8612 to convergence, i.e., to obtain a representative number of samples, we esti-

mate an upper bound on the efficiency of this thinning constant. Assuming optimistically that
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each of these samples is uncorrelated, i.e., ESS = #stored samples, we project that it takes approxi-

mately 110 h until convergence, because both parts of the split chain are required to reach an

ESS of 50 [55]. For four parallel and independent chains, as in our benchmarks above and as

advised [55], this corresponds, in the best of all cases, to an ESS/t of at most 4

1:1h ¼ 0:001 s−1.

Using the newly proposed guideline in Eq (14), CHRRT with a thinning factor of� 3, 938, 220,

it takes 27 h to generate 1, 000 samples per chain. Using four parallel chains, this setup results in

an ESS of 726 with an R̂ of� 1.01. Therewith, our guideline yielded an ESS/t = 0.0075 s−1, which

is 7.5 times more efficient than the overly optimistic upper bound we found for the previously

advised rule, when both methods use four chains. In summary, the new guideline is not only

Fig 5. Measured ESS/t for a range of thinning constants τ for the 1,108 dimensional Yeast8 (blue) and the 3,419 dimensional ecYeast8 models. For Yeast8, the

guideline t̂ ¼ d2=6 produced the highest performance, while for ecYeast8 t̂ ¼ d2=6 was measured to be around 4% more efficient ESS/t = 0.0547 s-1 vs.

ESS/t = 0.0527 s-1.

https://doi.org/10.1371/journal.pcbi.1011378.g005
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more efficient, but it also produces a converged set of samples for storage in a fraction of the

time. By using three validation models, we have empirically demonstrated that our guideline

leads to efficient sampling, also for larger GEMs.

4 Conclusion and outlook

CHRR is the leading algorithm for sampling convex polytopes uniformly, having a single

adjustable parameter, the thinning constant. In this work, we showed that the choice of the

thinning constant has dramatic consequences on sampling efficiencies, which are instrumental

for solving high-dimensional UCPS problems. Here, selecting an appropriate thinning con-

stant can make the difference between sampling success and failure, thus, being the key to sam-

ple challenging network models to convergence. Especially for contemporary GEM sampling,

it is therefore crucial to have a guideline at hand for the selection of the thinning constant that

achieves near-optimal performance.

With a range of UCPS problems at hand, we studied the effect of thinning on CHRR sam-

pling performance quantitatively, after explaining the statistical underpinnings of the effi-

ciency metric (ESS/t). From our quantitative benchmarks, we derived simple guidelines for

optimal CHRR thinning constant choice for simplices and GEMs, which we validated using

three out-of-sample, larger GEMs. Applying these guidelines is not only beneficial for obtain-

ing uniform samples of polytopes faster, but also helps to migrate UCPS towards green com-

puting, as both the CPU time and the storage cost of samples are reduced. Concerning the

question of how the computational requirements of CHRR with optimal thinning scale with

effective model dimension, our numerical results reveal a quadratic and linear correlation for

simplices and GEMs, respectively. Using the methods we have presented in our study, our

guideline can be updated as new types of models and data become available.

Benchmarking new UPCS algorithms and comparing their performances with those of

leading algorithms, such as CHRR, is important to advance the field and a topic of active

research [53, 58]. Recognizing the substantial impact of thinning on the performance of

CHRR, we advise performing comparisons with tuned thinning, and to report the used thin-

ning constant, which will help their reproduction.

Replacing the sequential per-sample by a one-shot or batched back-transform (Algorithm

1, L 12) could be more efficient, as long as memory issues are not limiting (storing unthinned

samples of large models, such as Recon3D, consumes prohibitively much memory). To combat

memory bottlenecks, Stein thinning [59], a technique to optimally compress the MCMC out-

put, may be applied before sample back-transformation. However, while this combination of

techniques is promising, the implementation is not straightforward. In contrast, fixed-fre-

quency thinning, as discussed in this work, is already implemented in many existing CHRR

packages [4, 42, 46] and immediately boosts performance without requiring additional work.

Despite thinning being a common MCMC practice, it is still controversially discussed. Stat-

isticians have pointed out that thinning is often not necessary and that it typically wastes

computational resources, unless the cost of using the samples is high [48, 49]. Even then,

Geyer argues that a thinning constant of two or three times the problem dimension should be

suited in nearly all cases. Consequently, the conventional advice given to the MCMC practi-

tioner is to not thin MCMC outputs, unless memory or post-processing capabilities are practi-

cally limiting. By showing that CHRR stands out among MCMC algorithms in that thinning is

critical to performance for sampling high-dimensional convex polytopes, such as GEMs, our

study encourages researchers to systematically examine conventional MCMC advice in their

specific application domain.
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S1 Appendix. Supporting information. Overview of benchmark problems, measured sam-

pling efficiencies, convergence diagnostics, and exemplary flux distributions for selected

GEMs.
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