Cell Segmentation with Uncertainty-Aware Contour Proposal Networks

Eric Upschulte^{1,2}, Stefan Harmeling³, Katrin Amunts^{1,4}, Timo Dickscheid^{1,2,5} Contact: e.upschulte@fz-juelich.de

Supplemental Material: celldetection.org

INTRODUCTION

- Automated analysis of neuronal cell properties is paramount for studying brain architecture
- Algorithms need high efficiency at high throughput, and good reliability
- Challenging to assess the quality or certainty of individual segmentations during inference
- The Uncertainty-Aware Contour Proposal Network (UA-CPN) [1] extends the CPN [2]
- Includes uncertainty estimation, without sacrificing efficiency
- Method is trained to introspect by predicting four estimates per object
- Valuable information for downstream tasks, quality control and data selection

METHOD

Uncertainty-Aware Contour Proposal Network

Contours Regression

- Contours are represented as vectors
- Sine and cosine transform maps to coordinates
- Predict coefficients a, b, c, d:

Contour Refinement

- Improves pixel precision
- Implicitly learned self-correction

Refinement Tensor v

Boundary Supervision

- Allows supervision with bounding boxes
- Allows for mixed-annotation training
- Generalized Intersection over Union [3]

$$GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$

Localization Uncertainty Estimation

- Goal: Efficiently provide uncertainty estimates for segmented object boundaries
- Model estimates four boundary localization uncertainties: top right, bottom, left
- Learns to introspect based on systemic errors made during training
- Trained with negative power log-likelihood loss [4]:

$$\mathcal{L}_{\text{uncertainty}} = \eta \left(\sum_{i} \left(\frac{(v_i - \hat{v}_i)^2}{2\delta^2} + \frac{1}{2} \log \delta_i^2 \right) + 2 \log 2\pi \right)$$

- η : IoU, δ_i : uncertainty estimate , v_i : Targeted boundary, \hat{v}_i : Predicted boundary
- Valuable information for downstream tasks, training data selection, quality control, ...

TRY IT YOURSELF

Napari Plugin

Hugging Face Spaces

Cell Detection with Contour Proposal Networks

Hugging Face API

PyTorch

1 Research Centre Jülich, Institute of Neuroscience and Medicine, Jülich

- 2 Research Centre Jülich, Helmholtz AI, Jülich
- 3 Technical University Dortmund, Department of Computer Science, Dortmund
- 4 University Hospital Düsseldorf, Cécile & Oscar Vogt Institute for Brain Research, Düsseldorf
- 5 Heinrich Heine University, Department of Computer Science, Düsseldorf

EXPERIMENTS & RESULTS

Neuronal cell bodies

- Test score of $0.48 F1_{ava}$
- Among the correctly detected cells, 86% of the estimated uncertainties show a margin smaller than 25% to the optimal solution of NPLL for the measured test loss
- Uncertainty estimation also uncovers annotation inconsistencies

Uncertainty estimation examples:

NeurlPS 22 Cell Segmentation Competition

2nd best mean F1 score (81.81), 3rd place in ranking

Cell segmentation examples (annotations of test set are nonpublic):

ONE CLICK, ONE CONTOUR – ZERO-SHOT TRANSFER

The Contour Proposal Network (CPN) can also produce high quality object contours and masks from input queries such as points or weak segmentations.

Zero-shot transfer results for point queries from the BBBC041 test set:

[1] Eric Upschulte, Stefan Harmeling, Katrin Amunts, and Timo Dickscheid. Uncertainty-Aware Contour Proposal Networks for Cell Segmentation in Multi-Modality High-Resolution Microscopy Images. OpenReview Preprint YtgRjBw-7GJ, 2022. [2] Eric Upschulte, Stefan Harmeling, Katrin Amunts, and Timo Dickscheid. Contour proposal networks for biomedical instance segmentation. Medical Image Analysis,

const data = await response.json()