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* Fixation in paraffine
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e Cut into histological sections

* 6000-8000 sections per brain
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e Thickness: 20um
e Staining for cell bodies
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* Light-microscopic imaging

—— hOQOc4la — hOCcb

e Resolution: 1um/pixel — hIP4 —— hOc3d —— hOc4lp —— hPO1

e up to 100'000 x 136'000 pixels

e up to 15 GB per image * Areas defined by the spatial organization of Goal: Automatically identify cytoarchitectonic areas

neurons into layers and columns using deep learning to enable large-scale analysis

Goal: Study the microstructural organization of * Indicators for connectivity and function

e e Microstructural reference for brain atlases [1, 2]

the human brain to understand its functions. A
histological brain section

Graph Neural Networks for Cytoarchitecture Classification

Probability-guided Contrastive Feature Learning

Idea: Train a neural network to map image patches from Idea: Model cytoarchitecture classification as graph node

similar brain areas to similar feature vectors classification task on approximate brain reconstructions

visual area hOcl1 Gra ph-based Framework reconstructed

> . brain surface
* Approximately reconstruct brain surface meshes s | S

Cytoarchitecture Learning

» Associate mesh nodes with image locations

 Compute deep cytoarchitectonic features

e Add additional features (location, probabilistic

maps, annotations) to graph nodes

* Train graph neural networks (GNNs) to classify

corresponding cytoarchitectonic areas for each

e Extract image patches from microscopic images motor area 4a node in the graph [5]

- Each image patch is associated with a discrete * GNNs combine local local high-resolution image

features with neighborhood information

* Low correlation - different area —» diferent features II I|
Contrastive learning: Learn by comparing image Probabilistic maps from Julich-Brain [1]

patches in a training batch [3] indicate the occurence probability of areas

Learned features enable cytoarchitecture classification at different locations

cytoarchitectonic features

probability vector over cytoarchitectonic areas ~ QOO ’ _
corresponding image locations

Probability vector indicates how likely a specific

area occurs at a specific location in the brain

Training & Evaluation

Pairwise similarity weight is defined as cross-

correlation between probability vectors * Training with categorical cross-entropy using

: : . .« available expert annotations
* High correlation —» similar area —» similar features

» 1860 sections from 7 brains (80% train, 20% test)

e 325 sections from 8th brain (transferability check)

* Architecture: Graph Attention (GAT) [6] (3 layers)

e Input: cytoarchitecture features, probability

vectors, canonical spatial coordinates [5]

e Performance measurement using macro-F1 score

Training & Neural Network Architecture
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unseen brains

Idea: Compute a continuous similarity
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