001014478 001__ 1014478
001014478 005__ 20231130201844.0
001014478 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03328
001014478 037__ $$aFZJ-2023-03328
001014478 041__ $$aEnglish
001014478 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
001014478 1112_ $$aApplied Inverse Problems$$cGöttingen$$d2023-09-04 - 2023-09-08$$gAIP 2023$$wGermany
001014478 245__ $$aInterior transmission eigenvalue trajectories
001014478 260__ $$c2023
001014478 3367_ $$033$$2EndNote$$aConference Paper
001014478 3367_ $$2DataCite$$aOther
001014478 3367_ $$2BibTeX$$aINPROCEEDINGS
001014478 3367_ $$2DRIVER$$aconferenceObject
001014478 3367_ $$2ORCID$$aLECTURE_SPEECH
001014478 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1701325532_2440$$xAfter Call
001014478 502__ $$cUniversity of Göttingen
001014478 520__ $$aComplex-valued eigenvalue trajectories parametrized by a constant index of refractionare investigated for the interior transmission problem. Several properties are derived forthe unit disk such as that the only intersection points with the real axis are Dirichleteigenvalues of the Laplacian. For general sufficiently smooth scatterers in two dimensionsthe only trajectorial limit points are shown to be Dirichlet eigenvalues of the Laplacian asthe refractive index tends to infinity. Additionally, numerical results for several scatterersare presented which give rise to an underlying one-to-one correspondence between thesetwo eigenvalue families which is finally stated as a conjecture.
001014478 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001014478 7001_ $$0P:(DE-HGF)0$$aPieronek, Lukas$$b1$$eCollaboration author
001014478 8564_ $$uhttp://www.aip2023.com/
001014478 8564_ $$uhttps://juser.fz-juelich.de/record/1014478/files/goettingen2023.pdf$$yOpenAccess
001014478 909CO $$ooai:juser.fz-juelich.de:1014478$$popenaire$$pdriver$$pVDB$$popen_access
001014478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
001014478 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Karlsruhe Institute of Technology$$b1
001014478 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001014478 9141_ $$y2023
001014478 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014478 920__ $$lyes
001014478 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001014478 980__ $$aconf
001014478 980__ $$aVDB
001014478 980__ $$aUNRESTRICTED
001014478 980__ $$aI:(DE-Juel1)JSC-20090406
001014478 9801_ $$aFullTexts