001014683 001__ 1014683
001014683 005__ 20240705080647.0
001014683 0247_ $$2doi$$a10.3390/nano13142143
001014683 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03388
001014683 0247_ $$2pmid$$a37513154
001014683 0247_ $$2WOS$$aWOS:001039888200001
001014683 037__ $$aFZJ-2023-03388
001014683 082__ $$a540
001014683 1001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b0$$eCorresponding author
001014683 245__ $$aPhase-Selective Epitaxy of Trigonal and Orthorhombic Bismuth Thin Films on Si (111)
001014683 260__ $$aBasel$$bMDPI$$c2023
001014683 3367_ $$2DRIVER$$aarticle
001014683 3367_ $$2DataCite$$aOutput Types/Journal article
001014683 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719990975_18876
001014683 3367_ $$2BibTeX$$aARTICLE
001014683 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014683 3367_ $$00$$2EndNote$$aJournal Article
001014683 520__ $$aOver the past three decades, the growth of Bi thin films has been extensively explored due to their potential applications in various fields such as thermoelectrics, ferroelectrics, and recently for topological and neuromorphic applications, too. Despite significant research efforts in these areas, achieving reliable and controllable growth of high-quality Bi thin-film allotropes has remained a challenge. Previous studies have reported the growth of trigonal and orthorhombic phases on various substrates yielding low-quality epilayers characterized by surface morphology. In this study, we present a systematic growth investigation, enabling the high-quality growth of Bi epilayers on Bi-terminated Si (111) 1 × 1 surfaces using molecular beam epitaxy. Our work yields a phase map that demonstrates the realization of trigonal, orthorhombic, and pseudocubic thin-film allotropes of Bi. In-depth characterization through X-ray diffraction (XRD) techniques and scanning transmission electron microscopy (STEM) analysis provides a comprehensive understanding of phase segregation, phase stability, phase transformation, and phase-dependent thickness limitations in various Bi thin-film allotropes. Our study provides recipes for the realization of high-quality Bi thin films with desired phases, offering opportunities for the scalable refinement of Bi into quantum and neuromorphic devices and for revisiting technological proposals for this versatile material platform from the past 30 years.
001014683 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001014683 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001014683 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014683 7001_ $$0P:(DE-Juel1)165589$$aHou, Xiao$$b1$$ufzj
001014683 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b2$$ufzj
001014683 7001_ $$0P:(DE-Juel1)177006$$aBae, Jin Hee$$b3
001014683 7001_ $$0P:(DE-Juel1)156529$$aNeumann, Elmar$$b4$$ufzj
001014683 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5$$ufzj
001014683 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b6$$ufzj
001014683 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
001014683 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano13142143$$gVol. 13, no. 14, p. 2143 -$$n14$$p2143 -$$tNanomaterials$$v13$$x2079-4991$$y2023
001014683 8564_ $$uhttps://juser.fz-juelich.de/record/1014683/files/nanomaterials-13-02143-v2.pdf$$yOpenAccess
001014683 909CO $$ooai:juser.fz-juelich.de:1014683$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b0$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165589$$aForschungszentrum Jülich$$b1$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b2$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b3$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156529$$aForschungszentrum Jülich$$b4$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b5$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b6$$kFZJ
001014683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001014683 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001014683 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001014683 9141_ $$y2023
001014683 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001014683 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014683 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001014683 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001014683 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014683 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001014683 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:18Z
001014683 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:18Z
001014683 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:18Z
001014683 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001014683 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2022$$d2023-10-26
001014683 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001014683 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
001014683 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
001014683 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001014683 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x4
001014683 980__ $$ajournal
001014683 980__ $$aVDB
001014683 980__ $$aI:(DE-Juel1)PGI-9-20110106
001014683 980__ $$aI:(DE-Juel1)PGI-6-20110106
001014683 980__ $$aI:(DE-Juel1)PGI-10-20170113
001014683 980__ $$aI:(DE-82)080009_20140620
001014683 980__ $$aI:(DE-Juel1)HNF-20170116
001014683 980__ $$aUNRESTRICTED
001014683 9801_ $$aFullTexts